Neural Comput & Applic (2004) 13: 101-111
DOI 10.1007/s00521-004-0412-5

ORIGINAL ARTICLE

J. M. Gorriz - C. G. Puntonet - M. Salmeron
J. J. G. de la Rosa

A new model for time-series forecasting using radial basis functions

and exogenous data

Received: 7 April 2004/ Accepted: 20 April 2004 / Published online: 25 May 2004

© Springer-Verlag London Limited 2004

Abstract In this paper, we present a new model for time-
series forecasting using radial basis functions (RBFs) as a
unit of artificial neural networks (ANNSs), which allows
the inclusion of exogenous information (EI) without
additional pre-processing. We begin by summarizing the
most well-known EI techniques used ad hoc, i.e., principal
component analysis (PCA) and independent component
analysis (ICA). We analyze the advantages and disad-
vantages of these techniques in time-series forecasting
using Spanish bank and company stocks. Then, we de-
scribe a new hybrid model for time-series forecasting
which combines ANNs with genetic algorithms (GAs).
We also describe the possibilities when implementing the
model on parallel processing systems.

1 Introduction

Several techniques have been developed to forecast time
series using stock value data. There also exist numerous
forecasting applications, as analyzed in [1]: signal sta-
tistics pre-processing and communications, industrial
control processing, econometrics, meteorology, physics,
biology, medicine, oceanography, seismology, astron-
omy, and psychology.

A possible solution to this problem was described by
Box et al. [2], who developed a time-series forecasting
analysis technique based on linear systems. Basically, the
procedure consisted of suppressing the non-seasonality
of the series by parameter analysis, which measures

J. M. Gorriz (X) - J. J. G. de la Rosa

Department of Systems Engineering and Automation,
Electronic Technology and Electronics,

University of Cadiz, Spain

E-mail: juanmanuel.gorriz@uca.es

C. G. Puntonet (<) - M. Salmeréon

Department of Computer Architecture and Computer Technology,
University of Granada, Spain

E-mail: carlos@atc.ugr.es

time-series data correlation, and models the selection
which best fits the data obtained (a specific-order AR-
IMA model). But, in real systems, non-linear and sto-
chastic phenomena occur, and so, the series’ dynamics
cannot be described exactly by classical models. Artifi-
cial neural networks (ANNs) have improved forecasting
results, detecting the non-linear nature of the data.
ANNSs based on radial basis functions (RBFs) allow a
better forecasting adjustment; they implement local
approximations to non-linear functions, minimizing the
mean square error to achieve the adjustment of neural
parameters. Platt’s algorithm [3], resource allocating
network (RAN), consisted of controlling the size of the
neural network, thus, reducing the computational cost
associated with the calculus of the optimum weights in
perceptron networks.

Matrix decomposition techniques have been used as
an improvement of Platt’s model [4]; these take the most
relevant data in the input space, to avoid processing
non-relevant information. The model incorporating
these techniques, ‘‘neural model with automatic
parameter adjustment for prediction” (NAPA-PRED),
also includes neural pruning [5]. An improved version,
INAPA-PRED, based on support vector machine
(SVM) philosophy, is presented in Sect 6.2 in the dis-
cussion of endogenous time-series forecasting.

The next step was to include exogenous information
in these models. Principal component analysis (PCA) is
a well-established tool in finance. It has been shown that
prediction results can be improved by using this tech-
nique [4]. Although both methods linearly transform the
observed signal into components, the difference is that,
in PCA, the goal is to obtain principal components
which are uncorrelated (features), giving projections of
the data in the direction of the maximum variance [6].
PCA algorithms use only second-order statistical infor-
mation. On the other hand, in [7], we can discover
interesting structures in finance using the new signal-
processing tool, independent component analysis (ICA),
which finds statistically independent components by
using higher-order statistical information to separate the

102

signals [8, 9]. This new technique may use entropy [10],
contrast functions based on information theory [11],
mutual information [12], or geometric considerations in
data distribution spaces [13-17], etc. Forecasting and
analyzing financial time series using ICA can contribute
to a better understanding and more accurate prediction
of financial markets [18, 19]. Nevertheless, in this paper,
we seek to exclude pre-processing techniques which may
contaminate raw data.

2 Forecasting model (cross prediction model)

The cross prediction model (CPM) is shown in Eq. 1. We
consider a data set consisting of correlated signals from
a stock exchange and seek to build a forecasting func-
tion, P, for one of the set of signals, {seriesy,...,seriesg},
which allows us to include exogenous data from the
other series. If we consider just one series [4], the indi-
vidual forecasting function can be expressed in terms of
RBFs as [20]:

P = 30 = 3o {21

where x is a p-dimensional input vector at time ¢, N is the
number of neurons (RBFs), f; is the output for each i-th
neuron, ¢; is the center of the i-th neuron which controls
the local space situation of this cell, and r; is the radius
of the i-th neuron. The global output is a linear com-
bination of the individual outputs for each neuron with
weight /;. Thus, we are using a method for moving be-
yond linearity, where the core idea is to augment/replace
the input vector, x, with additional variables, which are
transformations of x, and then use linear models in this
new space of derived input features. RBFs are one of the
most popular kernel methods for regression over the
domain R"and consists of fitting a different, but simple
model, at each query point, ¢;, using those observations
close to this target point in order to obtain a smoothed
function. This localization is achieved via a weighting
function or kernel f;.

We apply/extend this regularization concept to extra
series, including a row of neurons (Eq. 1), for each series
and weighting these values with a factor, b;; (the neural
resources of ANNs are updated using an on-line SVM
algorithm, INAPA-PRED, see Sect. 6.2). Finally, the
global smoothed function for the stock j is defined as:

(1)

N

j(x) =Y byFi(x,))

i=1

(2)

where F; is the smoothed function of each series, S is the
number of input series, and b;; are the weights for j-stock
forecasting. Obviously, one of these weight factors must
be relevant in this linear fit (b;~1, or auto-weight fac-
tor).

We can use matrix notation to include the set of
forecasts in an S-dimensional vector, P (B in Fig. 1):

Prediction Madel

jes X (2
st ()
Valves —

X(!) - {z; {Jl ke (IDJ input vector

B6)= Ei:gi:j; 8] i s

e= Xt -d-}:c:ar)—- P error function

Fig. 1 Schematic representation of CPM with adaptive radii,
centers, and input spacec ANNs (RAN + NAPAPRED + Reg
[18]). This improvement consists of neural parameter adaptation
when input space increases, i.e., RBF centers and radii are
statistically updated when dynamic series change takes place

P(x) = diag(B - F(x)) (3)

where F=(F,....,F) is an SxS matrix with /; € RSand B
is an SxS weight matrix. The operator diag extracts the
main diagonal.

To test this model, we can choose a set of values for
the weight factors as functions of the correlation factors
between the series, and so, Eq. 2 can be expressed as:

S S
P(x) = (1 - Zpi)fHZp,-Fi

i#] i#]

(4)

where P is the forecasting function for the desired stock,
J» and p; is the correlation factor with the exogenous
series, I.

We can include Eq. 4in the generalized additive
models for regression proposed in supervised learning
[21]:

E{Ylew--aXn}:9(+f1(Xl)+~-~+fn(Xn) (5)

where the Xs usually represent predictors and Y repre-
sents the system output; f;s are non-specific smooth
(“non-parametric”’) functions. Thus, we can fit this
model by minimizing the mean square error function, or
by the other methods presented in [21].

3 Forecasting model and genetic algorithms

CPM uses a genetic algorithm for b; parameter fitting (see
Sect. 6.1 for further discussion). A canonical GA is con-
structed by operations of parameter encoding, population
initialization, crossover, mutation, mate selection, popu-
lation replacement, etc. Our encoding parametric system
consists of the codification into genes and chromosomes
or individuals as a string of binary digits using the com-
plement representation, although other encoding meth-
ods are also possible, i.e., [22-25], where the value of each
parameter is a gene and an individual is encoded by a
string of real numbers instead of binary ones. In the initial

population generation step, we assume that the parame-
ters lie in a bounded region [0,1] (at the edge of this region,
we can reconstruct the model without exogenous data)
and Nindividuals are generated randomly. After the
initial population, N, is generated, the fitness of each
chromosome /; is determined by the function:

(6)

To overcome the problem of convergence in the optimal
solution, we add a positive constant to the denominator.
Another important question in the canonical GA is the
definition of the selection operator. New generations for
mating are chosen with their fitness function values
determined by roulette wheel selection. Once the new
individuals have been selected, we apply crossover (P,.)
to generate two offspring. In the next step, the mutation
operator (P,,) is applied to these offspring to prevent
premature convergence. In order to improve the con-
vergence speed of the algorithm, we included mecha-
nisms such as elitist strategy, in which the best individual
in the current generation always survives into the next.

The GA used in the forecasting function (Eq. 2) has
an absolute error value start criterion. Once it has
started, it uses the values (or individual) found to be
optimal (elite) the last time and applies a local search
around this elite individual. Thus, an efficient search is
performed around an individual (set of b;5) in which one
parameter is more relevant than the others.

103

The computational time depends on the encoding
length and the number of individuals and genes. Because
of the probabilistic nature of the GA-based method, the
proposed method almost converges to a global optimal
solution on average. Our simulation did not produce any
non-convergent cases. Figure 2 shows the iterative pro-
cedure implemented for the global prediction system
including GA.

4 Simulations

With the aim of assessing the performance of the CP
model, we used indexes of Spanish banks and companies
for a given period, with particular attention to the
IBEX35 index, which we consider is the most represen-
tative sample of Spanish stock movements.

We considered the simplest case, which consists
of two time series corresponding to the companies’
ACS (series;) and BBVA (series;). The former is
the target of the forecasting process and the latter
is introduced as external information. The period
studied was July-October 2000. Each time series
includes 200 points corresponding to selling days
(quoting days).

The horizon of the forecasting process (hor) was set at
8; the weight function of the forecasting function was a
correlation function between the two time series for
series, (in particular, we chose its square) and the

Fig. 2 Pseudo-code of
CPM + GA

Step 1:Initialization Parameters

W = size of prediction window; M = input series maximum length;

Hor = forecast horizon; N;,q = n° individuals of GA;
Epsilon = neural increase; delta= distance between neurons;
uga = activation of GA;Error = forecast error;
Matrix Ninps = number of neural inputs of each series;
Matrix nrprs = number of neurons of each series;
Matrix B = Matrix Weight Vector;

My euron = Neurons Parameters Matrix, radius, centres, etc.of each series
Vectinp = Input Vector Matrix; Vecto,: =Predicted values for each series

Target = Real Data in (t+hor); P = forecast function

Step 2: Modelling Input Space.

Toeplizt A Matrix in {,
Relevant data series determination in A (Des. SVD,QR)

Step 3: Iteration.

FOR ¢ =1 — Max — Iter
P(t) = BT*Output; Error = Target(t+hor) - P(t)
(Seek for vector B) IF (error > uga)
Execute GA (Selection, Crossover, Mutation, Elitism...)
ENDIF
(Neural parametrers) IF (error > epsilon and dist(Vectinp,radius) > delta)
Add neuron centered in l’ecmnp

ELSE

(Evolution of meural networks) Execute pruning.

Update Mnpcuron (Gradient Descend Method) .
ENDIFELSE
(Input Space Fit) IF (error >> epsilon) Modelling Input Space.
Update Mycuron and Vecting.

ENDIF
ENDFOR

104

difference to one for series;. We established a 10-day
forecasting window (W), and the maximum lag number
was set at 2W, in order to achieve a 10x20 Toeplitz
matrix. The first time point of the algorithm was set at
50. Figure 3 shows the forecasting results from lag 50 to
200, corresponding to series;.

Note the instability of the system in the very first
iterations, until it reaches an acceptable convergence.
The most interesting feature of the result is shown in
Table 1. From this table, it is easy to deduce that, if we
move one of the two series horizontally, the correlation
decreases dramatically. This is how we avoid the delay
problem encountered with certain networks, where the
information introduced into the system is non-relevant.
This problem is due to the increased level of informa-
tion, together with the fact that we have enclosed only
one additional time series (series,), despite the increased
neuron resources. At the end of the process, we used 20
neurons for net 1 and 21 for net 2. Although the fore-
casting is acceptable, we expect a better performance
with more data point series.

The next step consisted of using the general algorithm
including the GA. A four-individual (N;,q) population of
dimension 2x1 was used; this is sufficient because the
searching space was bounded. The GA was run four times
before convergence was reached. The individuals were
encoded with 34 bits (17 bits for each parameter). In this
case, convergence is defined in terms of the adjustment
function; other authors use other GA parameters, such as
the absence of change in the individuals after a certain
number of generations. We observed a considerable
improvement in the forecasting results and evidence of the
disappearance of the delay problem, as shown in Fig. 3.

The number of neurons at the end of the process is
the same as in the former case, since we have only
modified the weight of each series during the forecasting
process. The dynamics and values for the weights are
shown in Table 2.

Error behavior is shown in Table 2. Note that:

— We can bound the error by appropriate selection
of the b, parameters, when the dynamics of the series

Fig. 3a-h Simulation results. ”
a top: real series ACS; bottom:

real series BBVA. b Real series AN e

and predicted ACS series with
CPM. ¢ Absolute value of the .
error with CPM. d Real series
and predicted ACS series with

CPM + GA. e Real series and RPN [

predicted ACS series without o
exogenous data. f Absolute

33

ST, o~

Mo m
-

value of the error with

CPM + GA. g NRMSE

evolution for CPM (dots) and
CPM +GA (line). h NRMSE |
evolution for selected stock \
indexes

«:.\/'\/

Wl\' ~'MM\

31 |
0 /H M r l”

ﬁf—s'
‘?/
4
- :_)
T

Al ‘, } s
'f"‘} \\ \ N\\

A ‘hl

0

1
SH\’\ 0

150 B dg a0 an 20 140

—— BBVA

NRMSE Evalirion CPM Caresiour

Table 1 Correlation coefficients between real and predicted signals
with different lags

Lag p Lag o

0 0.89 0 0.89
+1 0.79 —1 0.88
+2 0.73 -2 0.88
+3 0.68 -3 0.82
+4 0.63 —4 0.76
+5 0.59 -5 0.71
+6 0.55 —6 0.66
+7 0.49 -7 0.63
+38 0.45 -8 0.61
+9 0.45 -9 0.58
+10 0.44 -10 0.51

Table 2 Dynamics and values of the weights for the GA

bseries Tl T2 T3 T4
by 0.8924 0.8846 0.8723 0.8760
by 0.2770 0.2359 0.2860 0.2634

is coherent (avoiding large fluctuations in stock
values)

— The algorithm converges faster, as shown at the very
beginning of the graph

— The forecasting results are better using GA, as shown
in Fig. 3, which describes the evolution of the nor-
malized mean square error

Finally, we carried out a simulation with nine indexes
and computed the prediction function for five series,
obtaining similar results, as presented in Table 2. In the
complete model, we limited the input space dimension to
three for the extra series and to five for the target series.
The NRMSE depends on each series (data set) and
target series (evolution). In this table, we also compare
the ICA method versus CPM for a limited data set (70
iterations). The NRMSE of the indexes increases at the
beginning of the process using the ICA method and
converges to CPM NRMSE values when the data set is
enlarged (estimators approach higher-order statistics).
This effect is also observed when the dynamics of the
series change suddenly, due to a new, independent event.

Due to the symmetric character of our forecasting
model, it is possible to implement parallel programming
languages (like PVM) to build a more general forecast-
ing model for a set of series. We would launch the same
number for “child” processes and banks; these would
run forecasting vectors, which would be weighted by a
square matrix with dimension equal to the number of
series, B. The “parent” process would have the results of
the forecasting process for the calculation of the error
vector, in order to update the neuron resources. There-
fore, we would utilize the computational cost of a
forecasting function to calculate the rest of the series.

5 Conclusions

In addition to the above ideas, we conclude that our new
forecasting model for time series is characterized by:

105

— The enclosing of external information. We avoid pre-
processing and data contamination by applying ICA
and PCA. Series are enclosed in the net directly.

— Forecasting results are improved by means of hybrid
techniques using well known techniques like GA.

— The possibility of implementation in parallel pro-
gramming languages (e.g., ““parallel virtual machine”
(PVM)), and the better performance and lower com-
putational time achieved by using a neuronal matrix
architecture.

6 Appendix: theoretical background

The purpose of this section is twofold: on the one hand,
we discuss in detail the GA implemented for parameter
fitting. We model the GA as an inhomogeneous Markov
chain [26] exhibiting the features and properties of our
genetic operators. On the other hand, we discuss further
the endogenous model used as a “kernel” for time-series
forecasting.

6.1 Description of GA

As noted in Sect. 3, CPM uses a GA for b; parameter
fitting. A GA can be modeled by means of a time inho-
mogeneous Markovchain [26], obtaining interesting
properties related with weak and strong ergodicity,
convergence, and the distribution probability of the
process [27]. In the latter reference, a canonical GA is
constituted operations of parameter encoding, popula-
tion initialization, crossover, mutation, mate selection,
population replacement, fitness scaling, etc., proving
that, with these simple operators, a GA does not con-
verge to a population containing only optimal members.
However, some GAs converge to the optimum, e.g., the
elitist GA [28] and those which introduce reduction
operators [29].

We have borrowed the notation mainly from [30],
where the model for GAs is an inhomogeneous Markov
chain model of probability distributions (S) over the set
of all possible populations of a fixed finite size. Let C be
the set of all possible creatures in a given world (vectors
of dimension equal to the number of extra series) and a
function £C — R". The task of the GAs is to find an
element, ceC, for which f{c) is maximal. We encode
creatures into genes and chromosomes or individuals as
strings of length ¢ of binary digits (size of alphabet A4 is
a=2) using one-complement representation; other
encoding methods are also possible [22-24] or [25], where
the value of each parameter is a gene and an individual is
encoded by a string of real numbers instead of binary
ones.

In the initial population generation step (choosing
randomly p €py, where py is the set of populations, i.e.,
the set of N-tuples of creatures containing = * ele-
ments), we assume that creatures lie in a bounded region
[0,1] (at the edge of this region, we can reconstruct the

106

model without exogenous data). After the initial popu-
lation, p, has been generated, the fitness of each chro-
mosome, ¢;, is determined via the function:

X 1
f(C,) e(C,’)
where e is an error function (i.e., the square error sum in
a set of neural outputs, solving the convergence problem
in the optimal solution by adding a positive constant to
the denominator).

The next step in the canonical GA is to define the
selection operator. New generations for mating are se-
lected, depending on their fitness function values, using
roulette wheel selection. Let p=(cy,....cn) Epn, HEN,
and f'be the fitness function acting in each component of
p. Scaled fitness selection of p is a lottery for every po-
sition 1 £ 7 < N in population p, such that creature c; is
selected with probability:

Ju(p,J)

25\1:1 fn(p7 i)

thus, proportional fitness selection can be described by
column stochastic matrices F,,, n€./", with components:

(q.Fup) = H%

where p,q€py so pinq; €C, (---) denotes the standard
inner product, and n(d;) is the number of occurrences of
g; in p.

Once the two individuals have been selected, an ele-
mentary crossover operator C(K,P,) is applied (setting
the crossover rate at a value, i.e., P. — 0, which implies
children similar to parent individuals), which is given
(assuming even N) by:

(7)

(3)

©)

N2

C(K,P.) =] (1 = P).s + P.C(2i - 1,2i, k)
i=1

(10)

where C(2i — 1,2i,k;) denotes the elementary crossover
operation of ¢/, ¢; creatures at position 1 < k < £and Jis
the identity matrix, to generate two offspring (see [27]
for further properties of the crossover operator).

The mutation operator, Mp,,, is applied (with prob-
ability P,,) independently at each bit in a population
p € pn, to avoid premature convergence (see [22] for
further discussion). The multi-bit mutation operator
with change probability following a simulated annealing
law with respect to the position 1 < i< L in pEgpy:

— mod {&!L
P, = u-exp <#> (11)
where (J is a normalization constant and y, the change
probability at the beginning of each creature p; in
population p, can be described as a positive stochastic
matrix in the form:

A(P)q) mod{%}) L—A(p,q)

(g, Mp,p) = p*P% exp <— > 11

dif () equ(i)

where A(p,q) is the Hamming distance between p and
qE€pn, dif(i), resp. equ(i) is the set of indexes where p and
q are different resp. equal. From Eq. 12 and observing
how the matrices act on populations, we can write:

v =TT ([1 o (222152

=1

+ j-exp <7m°dé}%}>mlu)>

A

(12)

(13)

where /' (A)=1®1...® m' ®...1isa linear operator

on V, the free vector space over A" and /' is the linear
1-bit mutation operator on Vi, the free vector space over

A. The latter operator is defined acting on the alphabet as:

(a(t),m'a(x)) = (a— 1),

i.e., the probability of changing a letter in the alphabet
once mutation occurs, with probability equal to Lpu.

The spectrum of Mp,, can be evaluated according to
the following expression:

sp(Mp,) = {(1 _:(_/1)1>*; Je [O,L]}

where (1) = exp (7m%d%>.

The operator presented in Eq. 13 has similar
properties to the constant multi-bit mutation opera-
tor, M, presented in [27]. M,, is a contracting map in
the sense presented in [30]. It is easy to prove that
Mp,, is a contracting map too, by using the Corollary
B.2 in [27] and the eigenvalues of this operator (Eq.
15).

We can also compare the coefficients of ergodicity:

7,(Mp,) <7, (M,,) (16)

where 7,(X) = max {||X,|, : v € 2", vLeand ||v[,=1}.

Mutation is more likely at the beginning of the string
of binary digits (“‘small neighborhood philosophy”). In
order to improve the speed of convergence of the algo-
rithm, we have included mechanisms such as elitist
strategy (reduction operator [31]) in which the best
individual in the current generation always survives into
the next (a further discussion of the reduction operator,
Py, can be found in [32]).

Finally, the GA is modeled, at each step, as the sto-
chastic matrix product acting on probability distribu-
tions over the populations:

0<7 #1<a— 1 (14)

(15)

107

Fig. 4 Pseudo-code of GA
i=0

end

Initialize Population

while not stop do
do N/2 times

end do

Build population Pj
Apply Reduction Operators (Elitist Strategies) to get pit1
i=

Select two mates from pj

Generate two offspring using crossover operator
Mutate the two children

Include children in new generation Pnew

Pi U Pnew

i+l

Seypr = Py - F, - Cpy - Mpy (17)
As shown above, the GA used in the forecasting func-
tion (Eq. 2) has an absolute error value start criterion
(i.e., error>uga=1.5). Once it starts, it uses the values
(or individual) found to be optimal (elite) the last time,
and applies a local search (using the selected mutation
and crossover operators) around this elite individual.
Thus, we perform an efficient search around an indi-
vidual (set of b;s) in which one parameter is more rele-
vant than the others.

The computational time depends on the encoding
length and the number of individuals and genes. Because
of the probabilistic nature of the GA-based method, the
proposed method almost converges to a global optimal
solution on average. In our simulation, no non-conver-
gent case was found. Figure 4 shows the GA-pseudocode
and Fig. 1 completes the iterative procedure implemented
for the overall prediction system including GA.

6.2 Endogenous learning machine

The purpose of this section is to introduce the founda-
tions of SVMs [33] and their connection with RT [34] in
order to show the new on-line algorithm for time-series
forecasting.

SVMs are learning algorithms based on the structural
risk minimization principle [35] (SRM), characterized by
the use of the expansion of SV “admissible” kernels and
the sparsity of the solution. They have been proposed as
a technique in time-series forecasting [36, 37] and have
addressed the overfitting problem present in classical
neural networks, thanks to their high capacity for gen-
eralization. The solution for SVM prediction is achieved
by solving the constrained quadratic programming
problem. SV machines, thus, are non-parametric tech-
niques, i.e., the number of base functions is unknown
beforehand. The solution of this complex problem in
real-time applications can be extremely complicated be-
cause of high computational time demands.

SVMs are essentially regularization networks (RN)
with the kernels being Green’s function of the corre-
sponding regularization operators [38]. Using this con-
nection, with a suitable choice of regularization operator
(based on SVM philosophy), we should obtain a

parametric model that is very resistant to the overfitting
problem. Our parametric model is a RAN [3] charac-
terized by the control of neural resources and by the use
of matrix decompositions, i.e., singular value decom-
position (SVD) and QR decomposition to input selec-
tion and neural pruning [4].

The following text is organized, thus: in the next
subsection, we give a brief overview of the basic VC
theory. The SV algorithm and its connection to RT
theory is then presented and, finally, the new on-line
algorithm is described.

6.2.1 Foundations of VC theory

A general notion of functional approximation problems'
can be described as follows:

Let A = {(x1,m),-..,(x¢, 1)} be a set of independent
and identically distributed training samples with un-
known probability distribution function, F(x,y). The
learning problem is that of choosing, from the given set
of functions, f{(x,0,), ®€A, where A is a set of parameters,
the one that best approximates the output, y, of the
system. Thus, the selection of the desired function must
be based on the training set, A, i.e., applying the
empirical risk minimization principle:

R(o) = / L(y,/(x, 0))dF (x,)

4
= 4D 0 01,0 = Rmp(2) (18)
i—1

where we substitute the loss function, L(y,f(x,x)), mea-
suring the discrepancy between the response, y, to a
given input, x, and the solution, f{x,), for a specific loss
which forms the least squares method. Under certain
conditions, the functional empirical risk converges to-
wards the expected risk and, hence, the approximation
in Eq. 18 holds, i.e., £ > . However, under small
sample sizes, non-convergence may occur and the
overfitting problem could arise [39]. This is avoided by
introducing a regularization term [34] to limit the com-

'Before discussing this problem, we prove the existence of an exact
representation for the continuous function in terms of simpler
functions using Kolmogorov’s theorem.

108

plexity of the loss function class arising from the prob-
lem of model selection [39].

The theory on controlling the generalization ability of
learning machines is devoted to constructing a new,
inductive principle to minimize the functional risk and
to control the complexity of the loss function class. This
is a major task, as noted above, whenever a small sample
of training instances “¢” is used [33]. To construct
learning methods, we use the bounds found by Vapnik:

R(s) <Remn (#) + 2 ()

where R is the actual risk, R.,,, is the empirical risk
depending on the samples, R is the confidence interval,
/2 is the set of selected parameters that defines the class
of approximation functions, and /is the VC dimension®.
In order to minimize the right-hand side of inequality 19,
we apply the SRM principle as follows:

Let 1 Cc ¥, C---C Px--- be a nested “admissi-
ble”* family of loss function classes with a finite VC
dimension denoted by ““/;”” withi=1,...,k, for a given set of
observations, A. The SRM principle chooses the suitable
class, Z(and the function L(x,z/), minimizing the
guaranteed risk (right-hand side of inequality 19. In other
words, the higher the complexity in the class function, the
lower the empirical risk with the higher confidence inter-
val (the second term in the bounds of the expected risk).

(19)

6.2.2 Support vector machines and regularization theory

The SV algorithm is a non-linear generalization of the
generalized portrait developed in the 1960s by Vapnik
and Lerner [40]. The basic idea in SVM for regression
and function estimation is to use a mapping function, @,
from the input space, #, into a high-dimensional feature
space, &, and then to apply a linear regression. Thus,
the standard linear regression transforms into:

J(x) = (0 ®(x)) +b (20)

where @ : y — %, bis a bias or threshold, and w € Fis a
vector defining the function class. The target is to
determine o, i.e., the set of parameters in the neural
network, minimizing the regularized risk expressed as:

Rreg[f} = Remp[f] + j*Ha)”z

thus, we are enforcing “‘flatness” in the feature space,
that is, we seek small w. Note that Eq. 21 is very com-
mon in RN with a certain second term.

The SVM algorithm is a suitable way of solving the
minimization of Eq. 21, which can be expressed as a

(21)

The subindex k is related to the structure or subset of loss func-
tions used in the approximation.

*Roughly speaking, the VC dimension, 4, measures how many
training points can be separated for all possible labeling using
functions of the class.

“In the strict sense presented in [33], that is, they are bounded
functions or satisfy a certain inequality.

quadratic programming problem using the formulation
stated in [33]:

« e e 1 2 ! *
mlnlleCEH(DH +C; (&+¢&), (22)

given a suitable loss function L(-) °, a constant C=> 0 and
with variables &, &, = 0. The optimization problem is
solved by constructing a Lagrange function, introducing
dual variables, using Eq. 22 and the selected loss func-
tion.

Once it is uniquely solved, we can write the vector w
in terms of the data points as follows:

L

W= Z (o7 — o) D(x;)

i=1

(23)

where o; and o, are the solutions of the above-men-
tioned quadratic problem. Once this problem, with high
computational demands®, is solved, we introduce Eq. 23
into Eq. 20 and obtain the solution in terms of dot
products:

4
f(x) = Z (o — o) (@(x;) - @(x)) + b (24)

i=1

At this point, we use a strategy to avoid computing
the dot product in the high-dimensional feature space in
Eq. 24, replacing it with a kernel function that satisfies
Mercer’s condition. Mercer’s theorem guarantees the
existence of this kernel function:

4
Sx) = hrk(x,x) +b (25)
i=1

where ;= (0 — o) and k(x;,x) = (O(x;) - O(x)).
Finally, we note, regarding the sparsity of the SV
expansion (Eq. 24), that only the elements satisfying
|f(x;)—yil=e, where € is the standard deviation of f{x;)
from y; (see selected loss function), have non-zero Lag-
range multipliers, «; and of. This can be proved by
applying Karush-Kuhn-Tucher (KKT) conditions [41]
to the SV dual optimization problem.

RT appears in the methods described for solving il/-
posed problems [34]. In RN, we minimize an expression
similar to Eq. 21. However, the search criterion is to en-
force smoothness (instead of flatness) for the function in
the input space (instead of the feature space). Thus, we
have:

Apa 2
Rreg|f| = Remp|f| + 5 Pf” (26)
SFor example, Vapnik’s ¢ insensitive loss function [33]:
_JIf(x) =yl —e for|f(x)—y[>e
L) =) = {O otherwise

This calculation must be performed several times during the pro-
cess.

where P denotes a regularization operator in the sense
of [34], mapping from the Hilbert space, H, of functions
to a dot product space, D, such that (f,g)Vf,g € H
is well defined. Applying Frechet’s differential” to Eq.
26 and the concept of Green’s function of P x P, we
have:

PxP. G(x;,x;) = d(xi — x;) (27)

(here, ddenotes Dirac’s 6, that is {f, d(x,))=f(x;)), and,
hence [4]:

l
fx) =2 i = ()], Glx,x) (28)
i=1

The correspondence between SVM and RN (Egs. 25 and
28) is proved if and only if Green’s function, G, is an
“admissible” kernel in the terms of Mercer’s theorem,
i.e., if we can write G as:

G(xi,x)) = (®(x;), D(x;)) with @ : x; — (PG)(x;,.) (29)

A similar proof of this connection can be found in
[38]. Hence, given a regularization operator, we can
find an admissible kernel such that the SV machine using
it will enforce flatness in the feature space and minimize
Eq. 26. Moreover, given an SV kernel, we can find a
regularization operator such that the SVM can be seen as
an RN.

6.2.3 On-line algorithm using regularization operators

In this section, we describe a new on-line RN based on
“RAN” algorithms® [3], which consist of a network
using RBFs, a strategy for:

— Allocating new units (RBFs), using a two-part novelty
condition [3]

— Input space selection and neural pruning using matrix
decompositions such as SVD and QR with pivoting [4]
together with a learning rule based on SRM, as dis-
cussed in the previous sections. Our network has one
layer, as stated in Eq. 25. In terms of RBFs, the latter
equation can be expressed as:

2
x(0)]))

N(1)
N _Ix(@)
i)=Y neesp (-0

(30)
where N(7) is the number of neurons, x¢) is the center of
the neurons, and o,(¢) is their radius at time ¢. In order to
minimize Eq. 26, we propose a regularization operator
based on SVM philosophy. We enforce flatness in the
feature space, as described in Sect 6.2, using the regu-
larization operator, ||2f]|” = [|w]’, and, thus:

"Generalized differentiation of a function:

[(d/dp)R[f + ph]], where heH.

8The principal feature of these algorithms is the sequential adap-
tation of neural resources.

dRr|f| =

109

N(t)

Ricg| f1 = Remplf1+5 > ik (xi,x)) (31)
ij=1

We assume that Remlf,:(y—f(x))2 and minimize Eq. 31
by adjusting the centers and radii (gradient descend
method, Ay = —5OR| f|/dy with simulated annealing):
Avi = =22 (x = x)hi(f (x) =)k (x,x)

g

N(z)

o) hihjk (xi,x;) (xi = ;) (32)
ij=1
and
Ah;i = a(t)f (xi) = n(f (x) — y)k(x, x;) (33)
where o(f) and a(f) are scalar-valued ‘“adaptation

gains’’, related to a similar gain used in the stochastic
approximation processes; as in these methods, it should
decrease in time. The second summand in Eq. 32 can be
evaluated in several regions, inspired by the “divide-and-
conquer” principle and used in unsupervised learning,
i.e., competitive learning in self-organizing maps [42] or
in expert SVMs [43]. This is necessary because of the
volatile nature of time series, i.e., the dynamics of stock
returns vary between different regions, leading to grad-
ual changes in the dependence between the input and
output variables. Thus, the super-index in the latter
equation is redefined as:

Ne(t) = {si(2) : [Ix(2) = xi(0)l[<p}

the set of neurons close to the current input. The
structure of the algorithm is shown below as pseudo-
code, including the set of initial parameters:

(34)

program online-algorithm

(Note: to denotes current iteration; k denotes

prediction horizon);

Initialize parameters and variables

Build input Toeplitz matrix A using (3W-1)

input values

Input space selection: determine Np relevant

lags L using SVD and QR_wp [8]

Determine input vector: x = x(to-k-L(1))

while (true)

if (n_rbfs > 0)

Compute f(x)

Find nearest RBF:|x-x_dmin|

else

f(x) = x(to-k-1)

Calculate error: e =|f(x)-x(to)|

if (e>epsilon and |x-x_ d_min| > delta) [7JAdd RBF
with parameters:

x_ I=x, sigma_i=kappa*|x-c_dmin}|, h=e

else

Execute pruning (SVD & QR_wp to neural activations) [8]

Update parameters minimizing actual risk

(15}(16}

if (e > theta*epsilon and n_inpsmax_inps)

n_inps = n_inps+1

Determine new lags: L=[L_1,L_2,...,L__Np]

Add rbf_add RBFs

to = to+ lend

110

Table 3 Evolution of normalized root mean square error
(NRMSE). Xth-S denotes the Xth-step prediction NRMSE on the
test set (noisy Mackey-Glass with delay changing operation mode

Method Ist-S 25th-S 50th-S 75th-S 100th-S
NAPA_PRED 1.1982 0.98346 0.97866 0.91567 0.90985
Standard SVM 0.7005 0.7134 0.7106 0.7212 0.7216
SVM_online 0.7182 0.71525 0.71522 0.72094 0.7127

6.2.4 Experiments

The application goal of our network is to predict com-
plex time series. We chose the high-dimensional chaotic
system generated by the Mackey-Glass delay differential
equation:

dx(¢)
Sdr

x(t—1)

—_b. A LY
1 +x19(¢ — 1)

x(t)+a (35)
with b=0.1, a=0.2, and delay ¢,=17. This equation was
originally presented as a model of blood regulation and
became popular in modeling time series benchmarks. We

added two modifications to Eq. 35:

— Zero-mean Gaussian noise with standard deviation
equal to 1/4 of the standard deviation of the original
series

— Random dynamics changes in terms of delay (between
100 and 300 time steps) #,;,=17,23,30 We integrated
the chaotic model using MatLab software on a Pen-
tium III 850 MHz computer, obtaining 2,000 patterns.
For our comparison, we used 100 prediction results
from SVM_online (presented in this paper), standard
SVM (with e-insensitive loss), and NAPA_PRED
(RAN algorithm using matrix decompositions being
one of the best on-line algorithms available to date
[4]). Clearly, there is a remarkable difference between
the above on-line algorithm and SVM philosophy.
Standard SVM and SVM_online achieve similar re-
sults for this set of data at the beginning of the pro-
cess. In addition, there is a noticeable improvement in
the last iterations because of the volatile nature of the
series. The change in time delay, 7, leads to gradual
changes in the dependence between the input and
output variables and, in general, it is hard for a single
model including SVMs to capture such a dynamic
input-output relationship inherent in the data.
Focusing our attention on the on-line algorithm, we
observe the better performance of the new algorithm,
such as a lower number of neurons (“‘sparsity”), and
improved input space dimension and forecasting re-
sults (Table 3).

References

1. Pollock DSG (1999) A handbook of time series analysis, signal
processing and dynamics. Academic Press, San Diego, Cali-
fornia

20.

21.

22.

23.

24.

25.

. Box GEP, Jenkins GM, Reinsel GC (1994) Time series analysis:

forecasting and control, 3rd edn. Prentice Hall, Englewood
Cliffs, New Jersey

. Platt J (1991) A resource-allocating network for function

interpolation. Neural Comput 3(2):213-225

. Salmeron-Campos M (2001) Prediccion de series temporales

can redes neuronales de funciones radiales y técnicas de desc-
omposicion matricial. PhD thesis, Departamento de Arquitec-
tura y Technologia de Computadores, University of Granada

. Moisés Salmeron, Julio Ortega, Carlos G. Puntonet, Alberto

Prieto (2001) Improved RAN sequential prediction using
orthogonal techniques. Neurocomputing 41:153-172

. Masters T (1995) Neural, novel and hybrid algorithms for time

series prediction. Wiley, New York

. Back AD, Weigend AS (1997) Discovering structure in finance

using independent component analysis. In: Proceedings of the
5th international conference on neural networks in the capital
markets (Computational finance 1997), London, December
1997

. Back AD, Trappenberg TP (2001) Selecting inputs for model-

ling using normalized higher order statistics and independent
component analysis. IEEE Trans Neural Networ 12:(3):612-617

. Hyvarinen A, Oja E (2000) Independent component analysis:

algorithms and applications. Neural Networks 13:411-430

. Bell AJ, Sejnowski TJ (1995) An information-maximization

approach to blind separation and blind deconvolution. Neural
Comput 7:1129-1159

. Comon P (1994) Independent component analysis: a new

concept. Signal Process 36:287-314

. Amari S, Cichocki A, Yang HH (1996) A new learning algo-

rithm for blind source separation. In: Advances in neural
information processing systems 8. MIT Press, Cambridge,
Massachusetts, pp 757-763

. Puntonet CG (1994) Nuevos algoritmos de separacion de fu-

entes en medios lineales. PhD thesis, Departamento de Arqui-
tectura y Tecnologia de Computadores, University of Granada

. Theis FJ, Jung A, Puntonet C, Lang EW (2003) Linear geo-

metric ICA: fundamentals and algorithms. Neural Comput
15(2):419-439

. Puntonet CG, Mansour A, Ohnishi N (2002) Blind multiuser

separation of instantaneous mixture algorithm based on geo-
metrical concepts. Signal Process 82(8):1155-1175

. Puntonet CG, Ali Mansour (2001) Blind separation of sources

using density estimation and simulated annealing. IEICE Trans
Fund Electr E84-A:2539-2547

. Rodriguez-Alvarez M, Puntonet CG, Rojas I (2001) Separation

of sources based on the partitioning of the space of observa-
tions. Lect Notes Comput Sci 2085:762-769

. Gorriz Saez JM (2003) Algoritmos hibridos la modelizacion de

series temporales con técnicas ar-ica. PhD thesis, Departa-
mento de Ing de Sistemas y Aut Tec Eleectronica y Electronica ,
University of Cadiz

. Back AD, Weigend AS (1997) Discovering structure in finance

using independent component analysis. In: Proceedings of the
Sth international conference on neural networks in the capital
markets (Computational finance 1997), London, December
1997

Moody J, Darken CJ (1989) Fast learning in networks of lo-
cally-tuned processing units. Neural Comput 1:284-294

Hastie T, Tibshirani R, Friedman V (2000) The elements of
statistical learning. Springer, Berlin Heidelberg New York
Michalewicz Z (1992) Genetic algorithms + data structures =
evolution programs. Springer, Berlin Heidelberg New York
Szapiro T, Matwin S, Haigh K (1991) Genetic algorithms ap-
proach to a negotiation support system. IEEE Trans Syst Man
Cybern 21:102-114

Chen S, Wu Y (1997) Genetic algorithm optimization for blind
channel identification with higher order cumulant fitting. IEEE
Trans Evolut Comput 1:259-264

Chao L, Sethares W (1994) Nonlinear parameter estimation via
the genetic algorithm. IEEE Trans Signal Proces 42:927-935

26.
27.
28.
29.

30.
3L

32.

33.
34.

3s.

36.

Olle Haggstrom (1998) Finite Markov chains and algorithmic
applications. Cambridge University Press, Cambridge, UK
Schmitt LM, Nehaniv CL, Fujii RH (1998) Linear analysis of
genetic algorithms. Theor Comput Sci 200:101-134

Suzuki J (1995) A markov chain analysis on simple genetic
algorithms. IEEE Trans Syst Man Cybern 25:655-659

Eiben AE, Aarts EHL, Van Hee KM (1991) Global conver-
gence of genetic algorithms: a markov chain analysis, parallel
problem solving from nature. Lect Notes Comput Sci 496:4-12
Schmitt LM (2001) Theory of genetic algorithms. Theoret
Comput Sci 259:1-61

Lozano JA, Larrafaga P, Graia M, Albizuri FX (1999) Ge-
netic algorithms: bridging the convergence gap. Theoret Com-
put Sci 229:11-22

Rudolph G (1994) Convergence analysis of canonical genetic
algorithms. IEEE Trans Neural Networ 5:96-101

Vapnik V (1998) Statistical learning theory. Wiley, New York
Tikhonov AN, Arsenin VY (1997) Solutions of ill-posed
problems. Winston, Washington, pp 415-438

Vapnik V, Chervonenkis A (1974) Theory of pattern recogni-
tion (in Russian). Nauka, Moscow

Muller KR, Smola AJ, Ratsch G, Scholkopf B, Kohlmorgen J
(1999) Using support vector machines for time series predic-
tion. In: Scholkopf B, Burges CJC, Smola AJ (eds) Advances in

38.

39.

40.

41.

42.

43.

111

kernel methods-support vector learning. MIT Press, Cam-
bridge, Massachusetts, pp 243-254

. Muller KR, Smola AJ, Ratsch G, Scholkopf B, Kohlmorgen J,

Vapnik V (1997) Predicting time series with support vector
machines. In: Proceedings of the 7th international conference
on artificial neural networks (CANN’97), Lausanne, Switzer-
land, May 1997, pp 999-1004

Smola AJ, Scholkopf B, Muller KR (1998) The connection
between regularization operators and support vector kernels.
Neural Networks 11:637-649

Muller KR, Mika S, Ratsch G, Tsuda K, Scholkopf B (2001)
An introduction to kernel-based learning algorithms. IEEE
Trans Neural Networ 12(2):181-201

Vapnik V, Lerner A (1963) Pattern recognition using general-
ized portrait method. Automat Rem Contr 24:774-780

Kuhn HW, Tucker AW (1951) Nonlinear programming. In:
Proceedings of the 2nd Berkeley symposium on mathematical
statistics and probabilistics. University of California Press, pp
481-492

Kohonen T (1990) The
78(9):1464-1480

Cao L (2003) Support vector machines experts for time series
forecasting. Neurocomputing 51:321-339

self-organizing map. P IEEE

