
ORIGINAL ARTICLE

Hanh H. Nguyen Æ Christine W. Chan

Multiple neural networks for a long term time series forecast

Received: 17 February 2003 / Accepted: 27 October 2003 / Published online: 18 December 2003
� Springer-Verlag London Limited 2003

Abstract The artificial neural network (ANN) method-
ology has been used in various time series prediction
applications. However, the accuracy of a neural network
model may be seriously compromised when it is used
recursively for making long-term multi-step predictions.
This study presents a method using multiple ANNs to
make a long term time series prediction. A multiple
neural network (MNN) model is a group of neural
networks that work together to solve a problem. In the
proposed MNN approach, each component neural net-
work makes forecasts at a different length of time ahead.
The MNN method was applied to the problem of fore-
casting an hourly customer demand for gas at a com-
pression station in Saskatchewan, Canada. The results
showed that a MNN model performed better than a
single ANN model for long term prediction.

Keywords Multiple neural networks Æ Time series
forecasting

1 Introduction

A common problem with the time series forecasting
model is the low accuracy of long term forecasts. The
estimated value of a variable may be reasonably reliable
for the short term future, but for the longer term future,
the estimate is likely to become less accurate. There are
several possible reasons to account for this increasing
inaccuracy. One reason is that the environment in which
the model was developed has changed over time.
Therefore, the input valid at a given time interval does
not in fact have an influence on the output relevant for a
time interval quite some distance away in the future.
Another reason is that the model itself was not well

developed. The inaccuracy arises due to immature
training or a lack of appropriate data for training. The
trained model may cover the surrounding neighbour-
hood of data but fails to model cyclic changes of trend
or seasonal patterns of data. The third cause of inac-
curacy is propagation errors that grow during recursive
model predictions. To predict p step ahead, a one-step-
ahead neural network is used recursively p times. Every
model is likely to be associated with an error. For long-
term predictions, this error is accumulated and can in-
crease beyond an acceptable threshold.

To address the third problem, we propose a multiple
neural network (MNN) model that combines short-term
and long-term neural networks to accommodate a wide
range of prediction terms. The MNN approach deals
with the third problem by reducing the number of
recursions necessary. In this approach, several neural
networks built to predict from short- to long-term are
combined into one model. Hence, the objective of this
research is to investigate whether grouping neural net-
works into a model improves the forecast performance
of a single neural network model in long-term fore-
casting.

This paper is organised as follows. Sect. 2 provides
some background literature on neural networks in time
series forecasting and the MNN approaches. Sects. 3
and 4 describe the design and implementation of the
proposed MNN approach. Sect. 5 presents a case study
using the proposed model to predict the hourly flow
rate at a gas station in Saskatchewan, Canada. Sect. 6
describes the conclusions and future work.

2 Background literature

2.1 Artificial neural networks (ANNs)
in time series forecasting

Researchers have made several comparisons between
different types of neural networks and ARIMA models.
For example, a multi-layer perceptron (MLP) has been

Neural Comput & Applic (2004) 13: 90–98
DOI 10.1007/s00521-003-0390-z

H. H. Nguyen Æ C. W. Chan (&)
Faculty of Engineering, University of Regina,
Regina SK S4S 0A2, Canada
E-mail: Christine.Chan@uregina.ca



shown to be equal to a nonlinear auto-regression model
or a Jordan net is equal to a non-linear moving average
model [4]. Since a MLP, and in particular, a back-
propagation neural network has been adopted in this
study, the MLP is discussed as follows.

The output vector of a MLP can be expressed by the
following equation:

~y ¼
Xk

j¼1
wo

jlr
Xn

i¼1
wh

ijxi þ bh
j

 !
þ bo

l

 !
; l ¼ 1 . . . m;

where ~x is the input vector, ~y is the output vector, ~wh,
and ~wo, and ~bh and ~boare the weights and biases of
hidden and output layers, n and m are the sizes of input
and output vectors, k is the number of hidden units, and
r is a non-linear function. If the input vector contains p
previous sequence elements and the output vector con-
tains the current element, the equation can be replaced
with

x tð Þ ¼ f x t � 1ð Þ; x t � 2ð Þ; :::; x t � pð Þð Þ þ e tð Þ;

where �(t) is the noise term, x is the time series and t is
the time index for the current time. This equation is
similar to the auto-regression equation in an auto-
regression model, with the exception that function f is
non-linear instead of linear. Back-propagation neural
networks and other feed-forward neural networks do
not include the moving-average elements.

Some limitations of ARIMA models include their
linearity and a requirement of stationarity. Neural
networks are not constrained by the assumption of
stationarity and can model the more complex charac-
teristics of a time series. However, due to a high degree
of freedom, neural networks usually require a large set
of training data. Moreover, over-fitting of the data and
non-uniqueness are common problems with neural net-
works.

Applications of neural networks and time series
modelling for prediction in various economic, scientific
and industrial problems have produced good research
results. Some examples include Walczak [15] who
achieved up to a 70% forecast accuracy on currency
exchange rates, as well as Lertpalangsunti and Chan [9]
and Lertpalangsunti et al. [10] who succeeded in pro-
ducing utility demand forecasts.

Tang et al. [14] made a quantitative comparison be-
tween ANNs and Box-Jenkins methods for time series
forecasting. They concluded that Box-Jenkins models
are slightly better in short term forecasting while neural
networks are better for long term forecasting. Moreover,
for a short memory time series, neural networks appear
to be superior to Box-Jenkins models. The two phrases
‘‘short term forecasting’’ and ‘‘short memory time ser-
ies’’ can be clarified as follows. The ‘‘term’’ refers to the
period of time in the future for which a prediction is
made, and ‘‘memory’’ refers to the correlation of a
prediction back to x previous intervals of time. Hence,

for short memory predictions, x is small and for long
memory predictions, x is large.

In Tang et al. [14], Box-Jenkins models were identified
using TIMESLAB�s model indentification macro. Three
experiments were set up to demonstrate three sets of time
series data with different characteristics. The airline
passenger data set was used in Tang et al. [14] and Far-
away and Chatfield [6]. The data set has a long memory,
an apparently increasing trend and a seasonal pattern.
The other two sets of data are on domestic car sales and
foreign car sales. They show some roughly seasonal
patterns. The former represents a short memory time
series with an irregular trend while the latter shows a
relatively smooth increasing trend. For the set of data on
domestic car sales with an irregular trend, neural net-
works worked better than the Box-Jenkins model. By
comparing the forecast results for the three sets of time
series data, Tang et al. concluded that as the complexity
of the time series increases, the neural network model
gives a better performance than the Box-Jenkins model.

Tang et al. calculated the total sum square error
(TSS) of the 24 hour period forecast as a measurement
of performance. The TSS for the two techniques were
compared along three dimensions: (1) the amount of
data used (2) the number of forecasted periods into the
future (3) the number of input variables. The following
conclusions were drawn:

– The amount of data can affect the performance of the
forecast technique, and more training data typically
means a more accurate forecast. However, even with a
small amount of time series data as an input, the
neural network can perform reasonably well while the
Box-Jenkins model cannot. This can be regarded as
one of the advantages of neural networks over Box-
Jenkins models.

– The results of the experiments on the three sets of data
in [14] show that the Box-Jenkins model outperforms
the neural network for the selected structures and
training methods for forecasts of one period and six
periods ahead. On the other hand, for forecasts of 12
periods and 24 periods ahead, the neural network is
superior. The relative performance of the neural net-
work improves as the forecast horizon increases,
which suggests that an ANN is a better choice for
long-term forecasting.

– When the number of input variables increases, the
forecasting ability of the neural network improves. It
is likely that more accurate forecasts are produced
when more information has been provided by the
increased number of input variables. However, there
is a trade-off between the accuracy of the model and
the model complexity in terms of the number of input
variables. To enhance accuracy of the forecast, the
size of the training set should be relatively large when
the number of input variables increases.

More recent comparisons between neural network
and Box Jenkins methods can also be found in [3, 6].

91



2.2 Multiple neural network approaches

Several researchers have attempted to use multiple
neural networks to improve model accuracy. This sec-
tion will review some of the approaches that are not
necessarily related to time series modelling, but which
explore different aspects related to multiple neural net-
works.

For a given prediction problem, several neural net-
work solutions can be obtained. The network resulting
in the least testing error is usually chosen. However, the
network may not be the optimum when it is applied to
the whole population. Hashem et al. [7] proposed using
optimal linear combinations of a number of trained
neural networks instead of using a single best network.
Each component network can have a different archi-
tecture and/or training parameters. Optimal linear
combinations are constructed by forming weighted sums
of the corresponding outputs of the networks. The
combination weights are selected to minimise the mean
squared error with respect to the distribution of random
inputs. Combining the trained networks may help inte-
grate the knowledge required by the component net-
works and thus improve model accuracy. From a neural
network perspective, combining the corresponding out-
puts of a number of trained networks is similar to cre-
ating a large neural network in which the component
neural networks are sub-networks operating in parallel,
and the combination weights are the connection weights
of the output layer.

The ensemble neural network system introduced by
Hashem et al. can be used for prediction problems only.
Cho and Kim [2] presented a method using fuzzy inte-
grals to combine MNNss for classification problems.
Unlike other methods such as the majority voting1 or
the Borda count2, the proposed method not only com-
bines the results from the component networks but also
considers the relative importance of each network. For
each new input datum, each trained component neural
network calculates the degree of certainty h that the
object belongs to a class. Next, the degree of importance
g of each component network in recognition of a class is
calculated. The fuzzy integral of each class is then
computed based on the values of h and g. Finally, the
class with the largest integral value is chosen as the
output class.

Lee [11] focused more on the data and its distribu-
tion. Lee introduced a multiple neural network ap-
proach in which each network ha ndles a different set of
the input data with different weights. In this approach, a
sub-network is created when the main network has little
confidence in its decision. The main network and sub-
network share the same input vector but each network

has its own hidden and output layers. The main network
handles most of the cases while sub-networks handle
more or less irregular parts of the data.

The output of the system is selected among multiple
outputs from the neural networks using a preference
vector.

Kadaba et al. [8] developed a MNN system to
improve accuracy by decreasing the input and output
cardinalities. They used back-propagation self-organis-
ing networks to compress data records and then used the
concentrated low-cardinality data records to feed a
classification neural network.

The work by Duhoux et al. [5] is most relevant to the
study area of this paper. Duhoux et al. compared two
methods for long-term prediction with neural network
chains. The classical method makes predictions one-
step-ahead recursively. In this method, only a single one-
step-ahead neural network is trained and it is used
iteratively p times to predict p step ahead. The input is
shifted correspondingly at each iteration step. The pro-
posed method, on the other hand, uses p different
trained neural networks with different sizes of input
vectors ranging from 1 to p. The input of a network is
the same as that of the previous network plus the pre-
dicted output from the previous network. However,
Duhoux et al. also reported some disadvantages of the
proposed method: (1) the model requires a large amount
of neural networks and input variables, and (2) a priori
knowledge about the signal tendencies is not used. This
work formed the basis of our proposed MNN system.

3 MNN system design

The MNN approach proposed in this paper aims to
improve upon the classical recursive one-step-ahead
neural network approach. The objective of the new ap-
proach is to reduce the number of recursions needed
while not requiring too many component neural net-
works. A MNN model is a group of ANNs working
together to perform a task. Each ANN is developed to
predict a different time period ahead. The prediction
terms are powers of 2, that is, the first ANN (0-ordered)
predicts 1 unit ahead, the second (1-ordered) predicts 2
units ahead, the third (2-ordered) predicts 4 units ahead,
and so forth. Hereafter an ANN that predicts 2n units
ahead is referred to as an n-ordered ANN.

There are two reasons to support the choice of binary
exponential. First, big gaps between two consecutive
neural networks are not desirable. The smaller the gaps
are, the fewer steps the model needs to take in order to
make a forecast. Forecasting is a process of reducing the
lead time to zero and smaller. For example, to forecast
one hour ahead, we reduce the lead time from 1 (as in
xt+1) to 0 (as in xt) and smaller (as in xt)1) as follows:
xt+1=f1(xt, xt)1). Similarly, it takes five steps to reduce a
lead of 25 to 0 in the base 3 exponential:

25!f2 16!f2 7!f1 4!f1 1!f0 0

1The majority voting rule chooses the classification made by more
than half of the networks.
2The Borda count of a class is the sum of the number of classes
ranked below that class by each network. The class of which the
Borda count is the largest is chosen.

92



while it takes only three steps to reduce a lead time of 25
from order 4 to order 0 in the binary exponential system:

25!f4 9!f3 1!f0 0. Secondly, the binary exponential does
not introduce bias on the roles of networks. A higher
exponential model tends to use more lower-ordered
neural networks in order to propagate ahead. Hence, the
burden of prediction is imposed on the lower-ordered
neural networks, which reduces the effectiveness of
the MNN system. For example, the following
sequences are used to reduce a lead time of 29 to 0
in the base 5 exponential and binary exponential:

29!f2 4!f0 3!f0 2!f0 1!f0 0, and 29!f4 13!f3 5!f2 1!f0 0. In
this example, the base 5 exponential system uses the
second-ordered neural network once and the zero-
ordered neural network four times while the binary
exponential uses each order (4, 3, 2, 0) only once. It can
be noted that the various forecasts at different lead times
may not be consistent with each other.

A MNN prediction model can be viewed as a single
partially connected ANN as illustrated in Fig. 1. Fig-
ure 1 shows a sample MNN with two sub-ANNs to
predict 3 units ahead. However, with a higher lead time,
the combination will become much more complex with
several layers and connections among sub-ANNs. Since
the weights of sub-ANNs and the weights connecting
sub-ANNs in a combined ANN are dependent on each
other, they should be estimated at the same time. This
requirement means it takes a long time to train a com-
plex combined ANN. In contrast, a MNN breaks down
the training into sub-ANNs and trains them separately.

To make a prediction, the neural network with the
highest possible order is used first. For example, to
predict 7 units ahead, a 2-ordered neural network is used
first. Assume that the time at present is t. The values of
xt and xt-1 are already known. We wish to predict xt+7.
Let us denote the function that an n-ordered network
models as fn and assume that every network has two
input variables, then the value of the output 7 units
ahead is computed as follows:

xtþ7 ¼ f2 xtþ3; xtþ2ð Þ
¼ f2 f1 xtþ1; xtð Þ; f1 xt; xt�1ð Þð Þ
¼ f2 f1 f0 xt; xt�1ð Þ; xtð Þ; f1 xt; xt�1ð Þð Þ

The training of individual component neural net-
works can be dependent or independent on the training
of the other networks. In the development of a MNN, it
may be necessary to implement multi-step validation.

One-step-ahead validation does not take into account
the model�s sensitivity to errors that arise due to multi-
step predictions [12]. In our MNN tool, multi-step
validation was implemented, but the validation window
for each ANN is different. The validation error of the
n-ordered network is calculated as the average of
root mean square errors (RMSE) of the (2n)-step-ahead
to the (2n+1)1)-step-ahead. In order to calculate these
steps, a higher ordered ANN needs to use the prediction
values of the lower ordered ANNs.

4 MNN system implementation

The MNN system was created to assist in the develop-
ment of MNN applications. The implementation and
usage details of the tool are described as follows.

The MNN tool was written in the Java language
using the JBuilder-4 development tool. The Java Run-
time Environment is required for the MNN tool to
function. The MNN system consists of two main parts:
the user interface and the neural network system. The
user interface includes a number of screens for receiving
input and displaying output. The neural network system
includes several classes implementing methods for
training and testing neural networks, as well as for
making forecasts.

The main classes implemented in the neural network
system are illustrated in Fig. 2. The synapse class cal-
culates the weighted input of a neuron and performs
weight changes. The neuron class includes functions to
connect with another neuron in the network and to
activate transfer functions. Several neurons are con-
nected together to form a back-propagation neural
network (BPNN) which is also a multi-layer perceptron.
The BPNN class implements methods for training,
testing and forecasting. If the multiple-step-ahead vali-
dation mode is triggered, an individual network com-
municates with other lower-ordered neural networks
during the training process. There is also a class that
manages all the neural networks in an array. This class
communicates with the data-set class and activates the
necessary methods in the component networks to con-
duct overall training, testing and forecasts. The data-set
class reads time series� points from text files and creates

Fig. 1 A sample MNN model Fig. 2 Main classes of the neural network system of the MNN tool

93



training and testing records. The size of these records
depends on user-input parameters and the topology of
each component neural network.

All neural networks in the current MNN system are
multi-layer neural perceptrons with only one hidden
layer. The user can determine the neural network
structures by setting the parameters including the num-
ber of input, output, hidden units, etc. The connection
weights and biases are initialised with small random
values.

The component neural networks in the system are
trained with the back-propagation algorithm. The sys-
tem repeats the training cycles until any one of the fol-
lowing scenarios occurs: the error reaches an acceptable
threshold, the number of cycles reaches a pre-set maxi-
mum value, or over-fitting occurs.

Over-fitting happens when a neural network learns
the training patterns well but has a poor generalisation
ability. In our implementation, the MNN system deter-
mines that over-fitting has occurred when the validation
error monotonically increases for a certain number of
cycles.

Some sample screens from the MNN system are
presented as follows.

The screen for inputting training parameters is shown
in Fig. 3. Since most of the input items on the screen are
self-explanatory, only brief additional explanations are
provided as follows.

– Minimum number of training cycles: in most case this
value is set to zero. However, in some cases the

minimum number of training cycles needs to be set to
a number greater than zero for the following reason.
The validation error often increases at the beginning
of the training process and then decreases eventually.
However, the MNN tool may mistake the increasing
error as over-fitting and halt the training. Enabling
the user to set the minimum number of training cycles
ensures the MNN tool would continue training past
this period without stopping due to misperceived
over-fitting.

– Maximum number of training cycles: when the neural
network has not over-fitted the data and the valida-
tion error is still higher than the threshold set by users,
the MNN system would continue training until the
maximum number of cycles is reached.

– Validation interval: the validation interval is the
interval between two consecutive validations in terms
of training cycles. For example, if the validation
interval is 4, validation is performed every 4 training
cycles. The default value for this parameter is 1. Set-
ting this parameter with a higher value reduces the
necessary training time because validation errors are
calculated less frequently during the training process.

– Validation window size: the validation window size is
the number of consecutive non-decreasing validation
errors needed before the system decides that over-fit-
ting has occurred.

– Using multi-step validation: users can choose one-step
validation or multi-step validation with this radio
button. In one-step validation, the lead times for
validation and training are the same. Each neural
network is validated by itself. In multi-step validation,
the lead times for validation spread over longer ranges
(refer to Sect. 3). In the latter case, the training of
higher-ordered neural networks requires the existence
of trained lower-ordered neural networks to calculate
the predicted output for a validation input vector.
Hence, the training quality of the higher-ordered
networks depends on the training quality of the lower-
ordered neural networks.

When the user clicks the ‘‘Edit each neural network
parameter’’ button in the screen shown in Fig. 3, the
input screen for setting the training parameters of each
individual neural network is displayed. Figure 4 shows
the input screen for an 0-ordered neural network. After
setting the parameters for one neural network, the user
can click the ‘‘Next’’ button to advance to the next
neural network. The major parameters on this screen as
described as follows.

– Load neural network from file: the user can continue
to train a previously trained neural network by
selecting this radio button and entering the name of
the neural network file.

– Neural network file name: when the ‘‘load neural
network’’ radio button is checked, the filename for the
neural network is entered here.

– Train neural network: since there are several neural
networks in a MNN system, it is possible that the userFig. 3 A screen for inputting training parameters

94



wants to continue training only a particular compo-
nent network. On the input screen for that particular
network, the user can choose whether to train the
component neural network with this radio button.

– Number of hidden units
– Error threshold (in percentage): when the validation

error is less than or equal to this value, training stops.
– Learning rate: the learning rate is a scaling factor that

decides how fast an algorithm should learn. A higher
learning rate improves the learning speed. But if the
rate is too high, the algorithm will exceed the opti-
mum weights.

– Momentum: the momentum adds a contribution from
the previous step when a weight is updated.

5 Case study

To illustrate the use of the single and multiple neural network
models, the models are applied for the prediction of the future
hourly gas flow through a compressor station in Saskatchewan.
This station is a part of the gas pipeline distribution system at St.
Louis East of Saskatchewan, Canada, and it is called the Melfort
compressor station.

An overview schematic of the St. Louis East gas stations and
their service areas is shown in Fig. 5. The system consists of two
stations located at Melfort and St. Louis. The Melfort station
receives gas from the St. Louis station and transmits it to the
surrounding consumption areas of Nipawin and Hudson Bay. To
satisfy customer demand at Nipawin and Hudson Bay, sufficient
gas must be transmitted to the Melfort station and sufficient
compressors must be running at the Melfort station. Therefore,
dispatchers at the Melfort station need to make decisions to turn
compressors on or off, or to adjust the compression level in order to
maintain the necessary pressure while not wasting resources. The
dispatcher�s decision has a significant impact on effectiveness of the
natural gas pipeline operation. When customer demand increases, a
dispatcher adds compression to the pipeline system by turning on
one or more compressors. On the other hand, the dispatcher turns
off one or more compressors to reduce compression in the pipeline
system when customer demand decreases. Incorrect decisions made

by the dispatcher will cause substantial economic loss to the
company.

The long term objective of this study is to aid the dispatcher in
satisfying customer demand with minimal operating costs, i.e., to
optimise natural gas pipeline operations. A short term objective is
to predict customer demand for gas. A dispatcher needs to know
ahead of time when the largest volume requirement of gas will
occur and to be ready for it. Otherwise, the system pressures at
Nipawin and Hudson Bay will be below the required minimum.
Since gas consumption is estimated monthly from billing records,
this estimated value cannot be used for predicting hourly demand.
Instead, we used the flow rate at the Melfort station as a substitute
variable for customer demand for gas.

An assumption made in the study is that flow rate at the Mel-
fort station reflects the consumption patterns of customers at
Nipawin and Hudson Bay. As illustrated in Fig. 6, the natural gas
flow rate fluctuates during the day. For example, the demand is
usually low at night. In the morning (from approximately 7 to 9
o�clock), the demand is higher because residential customers start
showering and cooking and industrial customers start their ma-
chines. In the afternoon, the demand decreases since the facilities
are already heated up. After work hours, the industrial customers�
demand becomes lower while the residential customers� demand
increases. The demand for natural gas also fluctuates depending on
the season. In the winter, the demand for natural gas is usually
higher than in the summer. Special occasions such as public holi-
days also constitute a factor that affects demand patterns.

5.1 Data collection and preprocessing

The data was obtained from SaskEnergy/Transgas. Hourly flow
rates in the period from December 2001 to mid August 2002 were
collected with an interruption from March 14th to May 27th, 2002.
Since data from the fall (from September to November) and spring
(from March to May) were not available, it was not possible to
divide the data set into four seasonal data sets for separate treat-
ments. The data was also preprocessed. Since there were several
hourly flow rates with values of zero in the data set, these data
points were assumed either missing or abnormal and were elimi-
nated from the data set. Furthermore, since the sigmoid activation
function was used which returns a number in the range of [0, 1], all
hourly flow rates were normalised to this range. The following
equation was adopted for normalisation:

x ¼ x�minð Þ= max�minð Þ;

where min and max are the estimated minimum and maximum
boundaries of monthly productions and not the actual boundaries
in the training data set. By examining the plot of the historical data
set, the min and max values were estimated as 0 and 600 (103m3). It
can be observed that the sole purpose of the normalisation process
is to ensure the range of output values from the neural network
model corresponds to the range of outputs from the sigmoid
function. Since the neural network method does not require sta-
tionary of data, a log correlation can be learnt and reflected in the
neural network�s weights.

Fig. 4 A screen for inputting training parameters of the component
neural network

Fig. 5 The schematic of the St. Louis East system

95



Furthermore, the data set was divided into three subsets for
training, validation and testing in the proportion of 5:1:1. The
training set contains approximately 2500 data points. The valida-
tion and test sets contain around 500 data point each.

5.2 Training and validation

Some consideration for training and validating the neural network
model are discussed as follows. It was determined that the size of
the input vector would consist of six hours of data, which consti-
tutes data for a quarter of a day. The rationale was that a shorter
period may not contain enough information to predict 24 hours
ahead while a longer period may render the neural networks too
complex and therefore require more data to train. Since the amount
of data available was limited, it is not desirable to have more inputs
because it would result in more weights to tune and higher possi-
bility to overfit the data.

The number of ANNs in the MNN was determined based on
the length of the expected prediction term. Since 24<24<25, a
maximum of four ANNs were used to predict 24 hours ahead.
However, this number can be set smaller based on validation errors
produced by different combinations of ANNs.

The weights of the first ANN were initialised with small values
in the range from 0 to 0.5. The subsequent ANNs were initialised
with the previous ANN�s weights in order to reduce training time.

Validation was done every four training cycles. Four was se-
lected to reduce the validation time spent. It was observed that
single step validation gave better results than multiple step vali-
dation in this application.

After five neural networks had been trained, their five combi-
nations, which included 1, 2, 3, 4 and 5 neural networks, were
validated on the validation set to predict 24 hours ahead. The one
with the lowest validation error rate out of the last four was chosen
as the final MNN. The one with only one neural network was the
single ANN.

A comparison of results generated from running both the
single and multiple neural network models is shown in Fig. 7. As
can be seen in Fig. 7, the MNNs with 4 and 5 neural networks
consistently performed better than the single ANN model.
Meanwhile, the MNNs with 2 and 3 neural networks gave good
results at first and became less and less effective when the pre-
diction period became longer. The model with 5 neural networks
performs only marginally better than the one with 4 neural net-
works. The average MAPEs for the five models with 1 to 5 neural
networks were 11.7%, 40.3%, 11.02%, 8.84% and 8.76%,
respectively. The one with 5 neural networks was chosen as the
final MNN for testing.

5.3 Testing

In order to facilitate a comparison between a MNN and a single
ANN, the same set of test data was applied to the MNN and the

single ANN to predict hourly flow rate for different leads from 1 to
24 hours. The results are summarised in Fig. 8.

It can be seen from Fig. 8 that the MNN consistently performs
better than the single first ordered ANN. As the prediction term
increases, the difference is more significant. This indicates a MNN
performs better than a single ANN in long term forecast.

The MAPE(i) is the mean absolute percentage error for lead i,
and the average MAPEs were calculated as follows:

AverageMAPE ¼ 1

24

X24

i¼1
MAPE ið Þ

For a 24 hour prediction, the average errors were 12.38% with
the single ANN and 8.736% with the MNN. The desired and
predicted outputs from the MNN and ANN model for a prediction
lead of 24 hours are shown in Fig. 9.

As can be seen, the MNN model performs better than the ANN
model. The predictions generated by the MNN shaped like a de-
layed version of the actual outputs, but the range of values
approximate the actual values. On the other hand, the prediction
generated by the single ANN were rather random. However, nei-
ther model performed completely satisfactorily on the 24-hour
prediction; this can be explained as follows. Firstly, there may not
be enough data points for training. The data used in this study was
collected in less than a year. Secondly, special occasions such as
holidays and weekends were not considered as factors for predic-
tion. The gas usage patterns on such occasions may be different
from that of a normal day. Thirdly, seasonal effects may play a role
but they were not considered either. A network trained on a data
set for summer may not generalise well in winter. Future research
could include collecting more data and a meaningful decomposi-
tion of the problem into sub-problems. Data classification could be
based on the seasons, and weekends versus weekdays.

Predictions of 6 hours ahead were also made because the
amount of available data was limited. For the 6 hours ahead pre-
diction, the average errors were 5.75% with the single ANN and
4.971% with the MNN. An error of 5% or less was considered
acceptable. The predicted outputs from MNN and ANN for a
prediction lead of 6 hours are shown in Fig. 10.

As can be seen in Fig. 10, both predicted lines are quite close to
the actual lines but the MNN model achieved better results than
the single ANN model.

Fig. 6 Hourly flow during a day

Fig. 7 The validated RMSE of 5 models for a 24 hour period

Fig. 8 Test errors for the MNN and the single ANN for a 24 hour
period

96



6 Conclusions and future works

The application case study shows that a MNN model
shows superior performance over a single ANN model
in long-term prediction. However, if the period is too
long, neither model can predict well. Incorporating
more neural networks into the model does not guar-
antee that the error would be lowered. As it can
be seen in the application case study, the model with
two neural networks did not perform more satisfacto-
rily than the single neural network. Similarly, using
more than five neural networks to predict a 24 hour
period ahead is not useful because the neural networks
with orders greater than or equal to five predict 32
periods or above. The accuracy of the model will not
improve even if a higher ordered neural network was
used.

A weakness of the MNN technique is that a data set
involving longer and more continuous time series is
needed in order to build the model.

Furthermore, some limitations that cause inaccuracy
in forecasting no matter how well a model is trained can
be observed as follows:

– There is genuine random noise in the data due to
errors in recording the data. In the time series, we
noticed several non-zero but abnormal data points. It
is not known whether they were incorrectly recorded
or if they are irregularities in the data set.

– The sample data set does not spread evenly in the
feature space and constitutes only a partial represen-
tation of the population. In the time series context,
this means that the length of time series under inves-
tigation is insufficient to represent all patterns in the
problem space. For example, the data set in the gas
consumption time series does not include data on
some seasons, which means the seasonal factor cannot

be considered. It is difficult to make any improvement
unless more data is collected. With the currently
available amount of data, an ARIMA model can be
an alternative method.

– The factors that significantly influence the variable to
be forecasted are either completely unavailable or
partially available within the examined time span. An
example of such parameters is temperature. When the
temperature declines, customers tend to use more gas.
However, the parameter of temperature is not in the
data set and future temperatures themselves is hard to
predict. Including temperature as one input parameter
for the model could be an item in the future research
agenda.

A weakness in the reported work is that only the
simple hold out validation method is employed in the
current systems. The data set was divided into two
portions for training and testing. However, this method
of evaluation can have a high variance. The evaluation
may depend heavily on which data points are included in
the training set and which are included in the test set.
Thus, the evaluation results may be significantly differ-
ent if a different division of data is adopted. Cross-val-
idation could be used in the future.

The current MNN tool still needs much improve-
ment. Considering the serious loss in the number of data
records when a missing data point is eliminated, a
method to replace the missing data should be used. A
simple approach to be used in the future is to replace the
missing data point with the average of neighbouring
points.

A future topic for research could be developing a
more automatic strategy for training which can reduce
users� efforts. A number of methods for adapting the
learning rate such as a bold driver [13] and annealing [1]
have been proposed in the literature. In a bold driver
neural network, after each training cycle, the training
error is compared to its previous value. If the error has
decreased, the learning rate is increased slightly. If the
error has increased significantly, the last weight changes
are discarded and the learning rate is decreased sharply.
The bold driver method keeps increasing the learning
rate slowly until it finds itself taking a step that has
clearly gone too far up the opposite slope of the error
function. The annealing method gradually lowers the
global learning rate.

Furthermore, a more ambitious improvement to the
MNN system would be to design and implement dif-
ferent kinds of training algorithms for the component
neural networks. Other possible topics for future re-
search are expanding the set of input variables to include
temperature data, and comparing the MNN model with
a multi-process dynamic linear model.

Acknowledgements We are grateful to SaskEnergy/Transgas for the
data set and their support for this project. The generous support of
a strategic grant from NSERC is also gratefully acknowledged. The
authors would also like to thank the anonymous referees for their
constructive comments.

Fig. 9 Predicted vs. actual for 24 hours ahead

Fig. 10 Predicted vs. actual for 6 hours ahead

97



References

1. Bos S, Amari S (1998) Annealed online learning in multilayer
neural networks. J Phys A Math Gen 31(22):L413-L417

2. Cho SB, Kim JH (1995) Combining multiple neural networks
by fuzzy integral for robust classification. IEEE Trans Sys Man
Cybern 25(2):380–384

3. Darbellay GA, Slama M (2000) Forecasting the short-term
demand for electricity: do neural networks stand a better
chance? Int J Forecast 16:71–83

4. Dorffner G (1996) Neural networks for time series processing.
Neur Ntwk Wor 6(4):447–468

5. Duhoux M, Suykens JAK, De Moor B and Vandewalle J
(2001) Improved long-term temperature prediction by chaining
of neural networks. Int J Neur Sys 11(1):1–10

6. Faraway J, Chatfield C (1998) Time series forecasting with
neural networks: a comparative study using the airline data.
Appl Stat 47:231–250

7. Hashem S, Schemeiser B and Yih Y (1994) Optimal linear
combinations of neural networks: an overview. In: Proceedings
of the 1994 IEEE International Conference on Neural Net-
works (ICNN�94), vol. 3, Orlando, FL, June 1994

8. Kadaba N, Nygard KE, Juell PL and Kangas L (1989) Mod-
ular back-propagation neural networks for large domain pat-
tern classification. In: Proceedings of the International Joint

Conference on Neural Networks (IJCNN�89), Washington DC,
18–22 June 1989

9. Lertpalangsunti N, Chan CW (1998) An architectural frame-
work for construction of hybrid intelligent forecasting systems:
application for electricity demand prediction. Engin App Art
Intellig 11:549–565

10. Lertpalangsunti N, Chan CW, Mason R and Ton-
tiwachwuthikul P (1999) A toolset for construction of hybrid
intelligent forecasting systems: application for water demand
prediction. Art Intellig Engin 13(1):21–42

11. Lee BJ (1996) Applying parallel learning models of artificial
neural networks to letters recognition from phonemes. In:
Proceedings of the Conference on Integrating Multiple Learned
Models for Improving and Scaling Machine Learning Algo-
rithms, Portland, OR, 4–5 August 1996

12. McNames J, Suykens JAK and Vandewalle (1999) Winning
Entry of the K. U. Leuven Time Series Prediction Competition,
Int J Bifurc Chaos 9(8):1485–1500

13. Sarkar D (1995) Methods to speed up error back-propagation
learning algorithm. ACM Comput Surv 27(4):519–542

14. Tang Z, Almeida C and Fishwick PA (1991) Time series fore-
casting using neural networks vs. Box-Jenkins methodology.
Simulation 57(5):303–310

15. Walczak S (2001) An empirical analysis of data requirements
for financial forecasting with neural networks. J Manage Info
Sys 17(4):203–222

98


