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I n retrospect, the year 1990 may well be viewed as the beginning of a new trend in the design of

household appliances, consumer electronics, cameras, and other types of widely used consumer

products. The trend in question relates to a marked increase in what might be called the
Machine Intelligence Quotient (MIQ) of such products compared to what it was before 1990.

Today, we have microwave ovens and washing machines that can figure out on their own what

settings to use to perform their tasks optimally; cameras that come close to professional

photographers in picture-taking ability; and many other products that manifest an impressive

capability to reason, make intelligent decisions, and learn from experience.

There are many factors that un-
derlie the marked increase in MIQ. It
is the author’s opinion that the most
important factor is the use of what
might be referred to assoft computing—
and, in particular, fuzzy logic—to
mimic the ability of the human mind
to effectively employ modes of rea-
soning that are approximate rather
than exact.

In traditional—hard—computing,
the prime desiderata are precision,
certainty, and rigor. By contrast, the
point of departure in soft computing
is the thesis that precision and cer-
tainty carry a cost and that computa-
tion, reasoning, and decision making
should exploit—wherever possible—
the tolerance for imprecision and
uncertainty.

A case in point is the problem of
parking an automobile. Most people
are able to park an automobile quite
easily because the final position of the
vehicle and its orientation are not
specified precisely. If they were, the

diffrculty of parking would grow geo-
metrically with the increase in preci-
sion and eventually would become
unmanageable for humans. What is
important to observe is that the prob-
lem of parking is easy for humans
when it is formulated imprecisely and
difficult to solve by traditional meth-
ods because such methods do not
exploit the tolerance for imprecision.

The exploitation of the tolerance
for imprecision and uncertainty un-
derlies the remarkable human ability
to understand distorted speech, deci-
pher sloppy handwriting, compre-
hend nuances of natural language,
summarize text, recognize and clas-
sify images, drive a vehicle in dense
traffic and, more generally, make ra-
tional decisions in an environment of
uncertainty and imprecision. In ef-
fect, in raising the banner of “Exploit
the tolerance for imprecision and
uncertainty,” soft computing uses the
human mind as a role model and, at
the same time, aims at a formalization

of the cognitive processes humans
employ so effectively in the perfor-
mance of daily tasks.

As was observed earlier, the year
1990 may be viewed as a turning
point in the evolution of the MIQ of
consumer products. The basis for this
observation are the following facts.

The industrial applications of fuzzy
logic starting in the early 1980s—of
which the prime examples are the
F.L. Smidth cement kiln and the Sen-
dai subway system designed by Hi-
tachi—laid the groundwork for the
use of fuzzy logic in the design and
production of high-MIQ consumer
products. The first such product—a
fuzzy-logic-controlled shower head—
was announced by Matsushita in
1987. This was followed by the first
fuzzy-logic-based washing machine—
also designed by Matsushita—in
1989.

In 1990, high-MIQ consumer
products employing fuzzy logic
began to grow in number and visibil-
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ity. Somewhat later, neural network
techniques combined with fuzzy logic
began to be employed in a wide vari-
ety of consumer products, endowing
such products with the capability to
adapt and learn from experience.
Such neurofuzzy products are likely
to become ubiquitous in the years
ahead. The same is likely to happen
in the realms of robotics, industrial
systems, and process control.

It is from this perspective that the
year 1990 may be viewed as a turning
point in the evolution of high-MIQ
products and systems. Underlying
this evolution was an acceleration in
the employment of soft computing—
and especially fuzzy logic—in the
conception and design of intelligent
systems that can exploit the tolerance
for imprecision and uncertainty,
learn from experience, and adapt to
changes in the operating conditions.

At this juncture, the principal con-
stituents of soft computing are fuzzy
logic (FL), neural network theory
(NN), and probabilistic reasoning
(PR), with the latter subsuming belief
networks, genetic algorithms, parts of
learning theory, and chaotic systems.
In the triumvirate of FL, NN, and
PR, FL is primarily concerned with
imprecision, NN with learning, and
PR with uncertainty. What is impor-
tant to note is that although there are
substantial areas of overlap between
FL, NN, and PR, in general FL, NN,
and PR are complementary rather
than competitive. For this reason, it is
frequently advantageous to employ
FL, NN, and PR in combination
rather than exclusively. A case in
point is the growing number of so-
called neurofuzzy (NF) consumer
products employing a combination of
fuzzy logic and neural network tech-
niques. Most NF products are fuzzy
rule-based systems in which NN tech-
niques are used for purposes of learn-
ing and/or adaptation.

The Meaning of Fuzzy Logic

When discussing fuzzy logic, there is
a semantic issue which requires clari-
fication. The term fuzzy logic is cur-
rently used in two different senses. In
a narrow sense, fuzzy logic is a logical
system that aims at a formaliza-
tion of approximate reasoning. As
such, it is rooted in multivalued logic,
but its agenda is quite different from

that of traditional multivalued logical
systems, e.g., Lukasiewicz’s logic. In
this connection, what should be
noted is that many of the concepts
which account for the effectiveness of
fuzzy logic as a logic of approximate
reasoning are not a part of traditional
multivalued logical systems. Among
these are the concept of a linguistic
variable, canonical form, fuzzy if-then
rule, fuzzy quantifiers, and such
modes of reasoning as interpolative
reasoning, syllogistic reasoning, and
dispositional reasoning.

" In a broad sense, fuzzy logic is al-
most synonymous with fuzzy set the-
ory. Fuzzy set theory, as its name sug-
gests, is basically a theory of classes
with unsharp boundaries. Fuzzy set
theory is much broader than fuzzy
logic in its narrow sense and contains
the latter as one of its branches.
Among the other branches of fuzzy
set theory are, for example, fuzzy
arithmetic, fuzzy mathematical pro-
gramming, fuzzy topology, fuzzy
graph theory, and fuzzy data analysis.
What is important to recognize is that
any crisp theory can be fuzzified by
generalizing the concept of a set
within that theory to the concept of a
fuzzy set. Indeed, it is very likely that
eventually most theories will be fuz-
zified in this way. The impetus for the
transition from a crisp theory to a
fuzzy one derives from the fact that
both the generality of a theory and its
applicability to real-world problems
are substantially enhanced by replac-
ing the concept of a set with that of a
fuzzy set.

Today, the growing tendency is to
use the term fuzzy logic in its broad
sense. In part this reflects the fact that
fuzzy set theory sounds less euphoni-
ous than fuzzy logic.

Linguistic Variables, Data
Compression, and Granulation
A concept that plays a central role in
the applications of fuzzy logic is that
of a linguistic variable [29, 31]. The
concept of a linguistic variable has
become sufficiently well understood
to make it unnecessary to dwell upon
it here. There is, however, one basic
aspect of the concept of a linguistic
variable which is worthy of note since
it is at the heart of its utility.
Specifically, consider a linguistic
variable such as Age whose linguistic

values are young, middle-aged, and old,
with young defined by a membership
function such as shown in Figure 1.

Clearly, a numerical value such as
25 is simpler than the function young.
But young represents a choice of one
out of three possible values whereas
25 is a choice of one out of, say, 100
values. The point of this simple ex-
ample is that the use of linguistic val-
ues may be viewed as a form of data
compression. It is suggestive to refer
to this form of data compression as
granulation.

The same effect can be achieved, of
course, by conventional quantization.
But in the case of quantization, the
values are intervals whereas in the
case of granulation the values are
overlapping fuzzy sets. The advan-
tages of granulation over quantiza-
tion are a) it is more general; b) it
mimics the way in which humans in-
terpret linguistic values (i.e., as fuzzy
sets rather than intervals); and c) the
transition from one linguistic value to
a contiguous linguistic value is grad-
ual rather than abrupt, resulting in
continuity and robustness.

Calculi of Fuzzy Rules and
Fuzzy Graphs

The concept of a linguistic variable
serves as a point of departure for
other concepts in fuzzy logic whose
use results in data compression.
Among these are the concepts of a
fuzzy if-then rule—or simply fuzzy
rule—and fuzzy graph. There is a
close relation between these concepts,
and both may be interpreted as gran-
ular representations of functional
dependencies and relations. Viewed
from this perspective, fuzzy rules and
fuzzy graphs bear the same relation
to numerically-valued dependencies
that linguistic variables bear to nu-
merically-valued variables.

Like the concept of a linguistic
variable, the concept of a fuzzy rule is
sufficiently well understood to make
it unnecessary to dwell upon it here.
In what follows, we shall confine our
attention to the less well-developed
concept of a fuzzy graph.

The concept of a fuzzy graph was
initially introduced in 1971 [32] and,
in a more explicit form, in 1974 [28,
30]. In an implicit form, the concept
of a fuzzy graph underlies the semi-
nal work of Mamdani and Assilian
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[14] on fuzzy control. In what follows,
we shall assume for notational sim-
plicity that mappings are from R to R.

As shown in Figure 2, a fuzzy
graph f*, of a functional dependence
f:X =Y, where X and Y are linguistic
variables in U and V, respectively,
serves to provide an approximate,
compressed representation of f in the
form

j*=A; XBI+A2

X By+ ...+A,%B,
or more compactly,
n
fr=24,xB
i=1
where the A;and B;,i = 1,. . ., n, are

contiguous fuzzy subsets of U and V,
respectively; A; X B; is the cartesian
product of 4; and B;; and + is the
operation of disjunction, which is
usually taken to be the union. Ex-
pressed more explicitly in terms of
membership functions of f*, 4; and
B,, we have

Hpx(u, v) = Vi () /N pg (0)),

where /A = min,\/ = max,u € U, and
v € V. In a more general setting, in
place of /A and \/ we may employ
t-norms and s-norms [35].
Alternatively, a fuzzy graph may be
represented as a fuzzy relation f*

F* A B
Ay B,
A Bs
Ay B,

or a collection of fuzzy if-then rules
f* if Xis A; then Yis B,
if X is A then Y is Bo
if Xis A, then Yis B,

with the understanding that the fuzzy

if-then rule
ifXis A, then Yis B, i=1, ..

)

is interpreted as the joint constraint
on X and Y defined by

X, Y)is 4, X B;.

For example, with this understand-
ing the fuzzy rule set

Ty} T
young
1 Tpmm———
1
1
1
1
1
0 ; = 0 st
20 40 Age 25 Age
N Figure 1. Linguistic and numeri-
{ f f cal values of young
Y
4 J_ Figure 2. Representation of a
m — functionandits fuzzy graph
Bi| et fuzzy Figure 3. Types of approxima-
25 . ¥ point | tion:functional, relational,and
A x B, fuzzy graph
0 Aj —)E
™ basis set
Y4 i functional
f!
0 =X
relational
A
b %-— f fuzzy graph
\J%
M f* = small x smail + medium x medium
\_ + + large x {medium} + ...
0 e

f* if X is small then Y is large
if X is medium then Y is medium
if X is large then Y is small

may be represented equivalently as
the fuzzy graph

[* = small X large + medium
X medium + . .. + large X small.

In effect, a fuzzy graph approxi-

mation to a given function combines
a relational approximation with data
compression (see Figure 3).

Central to the applications of the
concept of a fuzzy graph is the fact
that any type of function or relation
can be represented by a fuzzy graph
(see Figure 4).

Furthermore, fuzzy graph repre-
sentations may be employed to ap-
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proximate to probability distributions
and membership functions (see Fig-
ure b). Such representations play a
particularly important role in qualita-
tive decision analysis and fault diag-
nosis.

Operations on Fuzzy Graphs

A key issue in the calculus of fuzzy
graphs relates to the development of
computational methods for perform-
ing various basic operations on fuzzy
graphs. The operations in question
are generalizations of the corre-
sponding operations on crisp (non-
fuzzy) functions and relations. Some
of the basic operations of this type are
shown in Figure 6.

In dealing with this issue, it turns
out that the necessary computations
can be greatly simplified if an opera-
tion, *, is monotonically nondecreas-
ing, i, if @, b, @', and &' are real
numbers, then

¢ za,bz=b—a*xb=axb
o' =a, b =b—=a b =axbh

For such operations, it can readily be
shown that * distributes over \/ (max)
and /A (min). Thus

axb\c)=axb\/axc
asdAN)=axbNa=xc

This implies that if

fr=24,% B,

is a fuzzy graph and C is a fuzzy set
then

Cx (ZA, x B,-) = Z C*(A, % B,).

As an illustration, consider the
problem of finding the intersection of
fuzzy graphs ¥ and g* (Figure 7),
where

fr=24,% B,

Figure a. Fuzzy graph approxi-
mations to functions, contours,
and relations

Figure 5. Fuzzy graph approxi-
mate representations of prob-
ability distributions and mem-

bership functions

Figure 6. Basic operators on
functions and relations
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and

g.* :ZCJ XD}.
i

In this case, we have

fFOg* =2 (A% B) N (G x D)
Ly

which in the view of the distributivity
of N reduces to

[ 0g* =2 (4,NC) % (BN D).
i j

This result has an immediate applica-
tion to the interpolation of fuzzy if-
then rules, a problem which plays a
key role in fuzzy control.

More specifically, the problem of
interpolation may be expressed as an
inference query

(X, ¥)is 2, 4; X B;
Xis A
Yis B

On representing the major prem-
ise in the query as a fuzzy graph f* =
Z; A; X B; and the minor premise as a
cylindrical extension, A, of the fuzzy
set A (see Figure 8), the computation
of ?B reduces to that of finding the
intersection of f* and A and project-
ing the resulting fuzzy set on V, the
domain of Y.

Thus,

B = projV(A N (X A, % B)

which reduces to

B = projV(2 (A N A)) X B))

or, more compactly,
B=2m/\B,
1

where
m; = sup(Ad N A;)

represents the degree of match be-
tween A and A; (see Figure 9).

It should be noted that in a differ-
ent guise this technique of interpola-
tion was employed in the seminal
paper of Mamdani and Assilian [14]

and is currently used in most rule-
based control systems.

As a further example, consider the
problem of combining f* and g*

through the minimum operator.
Thus, if

f*=24;xB,
and

gt =2 A%

and min is the minimum operator,
then

f* min g* = E A; X (B; min C;)

where B,minC; is the minimum of B;
and C; computed through the exten-
sion principle [29]. This result makes
it possible to compute the intersec-
tion, F NG, of fuzzy sets F and G
whose membership functions w, and
ue; are represented qualitatively in
the form of fuzzy if-then rules (see
Figure 10),

F: if X is A; then up is B;
=1, ..., n
G: if X is A; then g is G;
i1=1, ...,n

A

An important practical application
of the fuzzy graph representation of
the intersection F N G relates to the
case where F and G represent two
conflicting goals and F N G a maxi-
mizing decision [1].

The concept of a fuzzy graph has
an important connection with the
representation of fuzzy relations.
Thus, if R is a fuzzy relation with at-
tributes which take linguistic values
(see Figure 11) then R may be repre-
sented as a fuzzy graph

R =Ry X Ri2 X Ri3 + Ryy
XRgp X Roz + R31 X Rap X Rss.

The representation of a fuzzy rela-
tion as a fuzzy graph may be applied
to the representation of diagnostic
tableaus (see Figure 12) in which the
entries are linguistic values of tests
and corresponding faults.

Thus, if the result of tests T\, Ty,
and Ty are L, L, and M, respectively,
then the degrees to which the faults
F| and Fy are present are L and Z,

* §*

cy

1y

m;

R| A Ay | A attributes
Ris | Riz | Bas
Ra; | Rz | Ras 4“—9——2;”“;2“6
R31 | Rap | Asa

Figure 7. Intersection of fuzzy
graphs f and g*

Figure 8. Intersection of  and A

Figure 9. The meaning of the
gegree of match between Aand
/]

Figure 10. Intersection of fuzzy
sets Fand G whose membership
functions are represented as
fuzzy graphs

Figure 11. Arelation with fuzzy-
valued attributes
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M L M
Figure 12. Diagnostic tableau. H L L H L
L = low; M = medium; H = high;
Z = zero
O—b—' fq I_._|7f2 i—»—o .-
X L L gtx)
a4 ap ap
squashing function
fi
1 1 1
VK_1 O— Sk O yu
e Sk oY,
Yy O— Sk O Yy
Wi
= 1 r
Yk =Yk Yk
W= Wy, W)
output of
1 i final state
X | Yo ¥n
i -«— ¥, = desired output
a. L) . —
+ <— d(yn, y) = enly)
X -+—— y = actual output
at €n-1lyn-1)
\— minimum output error
in state yn.4

Figure 13. Multilayer feedfor-
ward architecture with adjust-
able parameters

Figure 14. Structure of a layer. w,

plays the role of the parameter
vector a,

Figure 15. Graphical representa-

tion of dynamic programming

respectively. If the results of tests are
not in the tableau, then the degrees of
F) and Fyo may be computed through
the use of interpolation applied to the
fuzzy graph

D=L xLxMXLXZ
+MxHxLxMXxZ
+HXLxXxLxXHXL.

Fuzzy Probabilities Expressed as
Fuzzy Graphs

An important application area for the
calculus of fuzzy graphs relates to
computation with fuzzy probabilities
in the context of qualitative decision
analysis. In more specific terms, as-
sume that X and Y are random vari-
ables whose probability distributions
on finite sets are described in linguis-
tic terms. For example,

p(X): probability is low if X is small
probability is high if X is
medium
probability is low if X is
large
g(Y|X): probability is high if X is
small and Y is large

where ¢(Y | X) is the conditional prob-
ability distribution of ¥ given X. The
problem is to compute the probability
distribution of Y in the form of a fuzzy
graph.

Representing #(X) and ¢(Y| X} in
the form of fuzzy graphs

pX) = 2 A, % B;

and

g¥ | X) = 2 A, X C; % E,
b

where the A; are fuzzy subsets of u,
the B, are fuzzy subsets of [0, 1], the C;
are fuzzy subsets of I, and the E; jare
fuzzy subsets of [0, 1], the problem is
to find the fuzzy graph of the joint
probability distribution

h(X, ¥) = p(X)q(¥ | X).

To this end, we use a general rule of
combination of fuzzy graphs which
may be stated as follows.

Assume that f(X) and g(¥) are func-
tions which may be represented as
fuzzy graphs
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fX) = 2 (F, % F))

and

g(¥) = Z((;j X G)).
]

Then, if f(X) and g(¥) are combined
through a binary operation = (e.g.,
multiplication or addition), then the
resulting function may be expressed
as

X, Y) = fiX) *g(),

and the fuzzy graph representing
X, Y) i1s given by

h(X, Y) = 2 (F, X G)) X (F] % G).
i

This result provides the basis for
computation with imprecisely known
probabilities which are expressed as
fuzzy graphs or equivalently as collec-
tions of fuzzy if-then rules involving
linguistic probabilities. In the case of
such probabilities, we have

pX) = S(P, X P))
g1 X) = 5@, % Q))
r(X, V) = p(X) q(¥ [ X)

and

X, ¥)= 2 (P x Q) x (P +Q))
)

where # represents the operation of
multiplication of fuzzy probabilities
P and Q.

Dynamic and Gradient Programming
A basic problem in the calculi of fuzzy
rules and fuzzy graphs is that of the
induction of rules from input/output
data. For this purpose, it is expedient
to employ the techniques of dynamic
programming and gradient pro-
gramming—which have been devel-
oped for multistage optimization—to
identify parameters in multilayer
structures employing feedforward
architecture of the form shown in
Figure 13.

In this architecture, a,, . . ., a, are
vector parameters which play the role
of weights in a neural network or pa-
rameters of membership functions in
a fuzzy rule-based system; x
is the input; ¥ is the output, and f,
.. ., [ are functions defining the lay-
ers of the feedforward structure. Ih

the case of a neural network, the
structure of fy, k = 1,. . ., n, is shown
in Figure 14, with W, playing the role
of the parameter vector ay.

If y, is the target output when the
input is x = xg, then d(y,, y) is the dis-
tance between the output y and the
target output ¥, (see Figure 15). In
effect, d(y,, ¥) is the error, e,(y), at the
output of the nth layer. Using dy-
namic programming and letting e;(y;)
denote the minimum output error
achievable when the input to f,4, is y,
and a4, . . ., a, are optimal, the re-
currence equations for ¢,(y,) may be
written as

en*l(}‘n*?) = minan(e,,(f;,(a.,,_, yn— l)))
gn*Q(_}’n*Q} = n‘li]'l““ _](f-)n.— 1 (fn -1
(an-—l, _\’n.—‘z)))

e1(y1) = min, (eo( folag, ¥1)))
eo(yo) = min, (e,(f1(a1, yo)))
Yo = %o

Thus, setting yo = x9, we can succes-
sively compute optimal a,, . .. , a,
and thereby determine the parame-
ter vectors which minimize the out-
put error. In these computations, x
and y can be treated as vectors repre-
senting the input and output data
sets.

To approximate to the solution of
recurrence equations, we can employ
gradient programming, which in-
volves the use of chain differentia-
tion. More specifically, in the case of
the feedforward structure shown in
Figure 13, we can write

Be,v)  _ 0w O
bay, s ba,
&nUn) — &n(}'n) Byn—)
day —; i 8aty—;
dealya)  _ O i1
alvnﬂ 3)‘;17{41 Sﬁ‘n—s .

It is of interest to note that, on apply-
ing these equations to the structure
shown in Figure 15, we arrive at the
familiar recurrence equations associ-
ated with the backpropagation algo-
rithm [3].

Alternatively, applying the equa-
tions in question to multilayer struc-
tures representing fuzzy rule-based
systems, one obtains recursive algo-
rithms for the computation of param-
eters of membership functions. More
detailed expositions of methods of
this type may be found in important

contributions of Takagi, Sugeno, and
Kang [19, 21], Jang [4, 5], Wang [24],
Lee and Lin [13], among others.

Concluding Remarks

In this brief article we have attempted
to summarize some of the basic ideas
underlying soft computing and its
relation to fuzzy logic, neural net-
work theory, and probabilistic rea-
soning. The principal aim of soft
computing is to achieve tractability,
robustness, low solution cost, and
high MIQ through the exploitation of
the tolerance for imprecision and
uncertainty. Insofar as fuzzy logic is
concerned, its principal contribution
to this aim centers on the concept of
granulation, the concept of a linguis-
tic variable, and the calculi of fuzzy
rules and fuzzy graphs. Through
these concepts and methods, fuzzy

logic provides a model for modes of

reasoning which are approximate
rather than exact. The role model for
fuzzy logic is the human mind.3

References
1. Bellman, R.E and Zadeh, L.A. Deci-
sion-making in a fuzzy environment.
Manage. Sci. 17, (1970), B-141-B-164.
2. Berenji, H.R. Fuzzy logic controllers.
In An Introduction to Fuzzy Logic Appli-
cations in Intelligent Systems. Kluwer
Academic Publishers, Boston, 1991,
69-96.
3. Hertz, ]., Krogh, A. and Palmer, R.
Introduction to the Theory of Neural Com-

putation. Addison-Wesley, Reading,
Mass., 1991.
4. Jang, ]J.-S.R. ANFIS: Adaptive-

network-based fuzzy inference sys-
tems. TEEE Trans. Syst. Man Cybernet.
23, 3 (May 1992).

5. Jang, ].-S5.R. Self-learning fuzzy con-
troller based on temporal back-propa-
gation. JEEE Trans. Neural Netw. 3, 5
(Sept. 1992), 714-723.

6. Karr, C. Genetic algorithms for fuzzy
controllers, AI Exp. 6, (1991), 26-33.

7. Kaufmann, A. and Gupta, M.M. Fuzzy
Mathematical Models in Engineering and
Management Science. North Holland,
Amsterdam, 1988.

8. Kaufmann, A. and Gupta, M.M. Intro-
duction to Fuzzy Arithmetic. Van Nos-
trand, New York, 1985.

9. Kosko, B. Neural Networks and Fuzzy
Systems: A Dynamical Systems Approach to
Machine Intelligence. Prentice-Hall,
Englewood Cliffs, N.J., 1991.

10. Langari, R. and Berenji, H.R. Fuzzy
logic in control engineering. In Hand-
book of Intelligent Control. Van Nos-
trand, New York, 1992,

COMMUNICATIONS OF THE acMm March 1994/Vol 37, No.3 83



11.

12.

13.

14.

15.

16.

17.

18.

Lee, C.C. Fuzzy logic in control sys-
tems: Fuzzy logic controller. Part 1
and Part 1L JEEE Trans. Syst. Man
Cybernet. 20, (1990).

Lee, M A, and Takagi, H. Integrating
design stages of fuzzy systems using
genetic algorithms. In Proceedings of
the Second International Conference on
Fuzzy Systems (FUZZ-IEEE '93) (Mar.
28-Apr. 1, 1993). IEEE, New York,
1993, pp. 612-617.

Lin, C.-T. and Lee, C.S.G. Neural-
network-based fuzzy logic control and
decision system. IEEE Trans. Comput.
40, 12 (Dec. 1991), 1320-1336.
Mamdani, E.H. and Assilian, 5. An
experiment in linguistic synthesis with
a fuzzy logic controller. Int. J. Man-
Machine Stud. 7, (1975).

Mamdani, E.H. and Gaines, B.R.,
Eds. Fuzzy Reasoning and Iis Applica-
tions. Academic Press, London, 1981.
Negoita, C. Expert Systems and Fuzzy
Systems. Benjamin Cummings, Menlo
Park, Calif., 1985.

Pedrycz, W. Fuzzy Control and Fuzzy
Systems. John Wiley, New York, 1989,
Sugeno, M. Industrial Applications of
Fuzzy Control. Elsevier Science Pub-

19.

20.

21.

22.

23.

24.

25.

26.

lishers B.V., Amsterdam, 1985.
Sugeno, M. and Kang, G.T. Structure
identification of fuzzy model. Fuzzy
Sets Syst. 28, (1988), 15-33.

Takagi, H. and Hayashi, I. NN-driven
fuzzy reasoning. Int. J. Approx. Reason.
(1991), 191-212.

Takagi, T. and Sugeno. M. Fuzzy
identification of systems and its appli-
cations to modeling and control. IEEE
Trans. Syst. Man Cybernet. (1985), 116-
132,

Togai, M. and Watanabe, H. An infer-
ence engine for real-time approxi-
mate reasoning: Toward an expert
system on a chip. IEEE Exp. I, (1986),
55-62.

Turksen, I.B. Approximate reasoning
for production planning. Fuzzy Sels
Syst. 26, (1988), 23-37.

Wang, L.-X. Stable adaptive fuzzy
control of nonlinear systems. [EEE
Trans. Fuzzy Syst. 1. 1 (Feb. 1993).
Yager, R.R. and Zadeh, L.A., Eds. An
Introduction to Fuzzy Logic Applications
in Intelligent Systems. Kluwer Academic
Publishers, Boston, 1991.

Yasunobu, S. and Myamoto, S. Auto-
matic train operation by predictive

84 March 1994/Vol.37, No.3 COMMUNICATIONS OF THE ACM

fuzzy control. In Industrial Applications
of Fuzzy Contrel. North Holland, Am-
sterdam, 1985.

Zadeh, L.A. The calculus of fuzzy if-
then rules. Al Exp. 7, 3 (Mar. 1992),
22-27.

Zadeh, L.A. A fuzzy-algorithmic ap-
proach to the definition of complex or
imprecise concepts. Electronics Res.
Lab. Rep. ERL-M474, Univ. of Cali-
fornia, Berkeley. 1974. Also in Int. J.
Man-Machine Stud. 8, (1976), 249-
291.

Zadeh, L.A. The concept of a linguis-
tic variable and its application to ap-
proximate reasoning—I. Inf. Sci. 8,
(1975), 199-249.

Zadeh, L.A. On the analysis of large
scale systems. In Systems Approaches
and  Environment  Problems.  Van-
denhoeck and Ruprecht, Gottingen,
Germany, 1974, 23-37.

Zadeh, L.A. Outline of a new ap-
proach to the analysis of complex sys-
tems and decision processes. IEEE
Trans. Syst. Man  Cybernet. SMC-3,
(1973), 28-44.

Zadeh, L.A. Toward a theory of fuzzy
systems. In Aspects of Network and Sys-
tem Theory. Rinehart and Winston,
New York, 1971, 469-490.

Zadeh, L.A. Thinking machines—a
new field in electrical engineering. Co-
lumbia Eng. 3, (1950), 12-13, 30, 31.
Zadeh, L.A. and Yager, R.R., Eds. Un-
cerlainty in Knowledge Bases. Springer-
Verlag, Berlin, 1991.

Zimmerman, H.J. Fuzzy Set Theory and
1is Applications. 2d ed. Kluwer-Nijhoff,
1990.

27.

28.

29.

30.

31.

32.

33.

34.

35.

About the Author:

LOTFI A. ZADEH is Professor Emeritus
and Director of the Berkeley Initiative in
Soft Computing (BISC) in the Computer
Science Division at the University of Cali-
fornia at Berkeley. Current research inter-
ests include fuzzy logic, soft computing,
and intelligent systems. Author’s Present
Address: Computer Science Division,
University of California at Berkeley,
Berkeley, CA 94720; email: zadeh@cs.
berkeley.edu

Research supported by NASA Grant NCC
2-275, EPRI Agreement RP 8010-34, MICRO
State Program No. 90-191 and the BISC (Berke-
ley Initiative in Soft Computing) program.

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publi-
cation and its date appear, and notice is give that
copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

© ACM 0002-0782/94/0300 $3.50




