Title

Contact
Information

Topic

Abstract

Status

Domain

Experiences with the Subsumption Architecture

John E. Arnold

Digital Equipment Corporation

295 Donald Lynch Boulevard DLB12-2/D4
Marlborough, MA 01752

Net: Arnold@istg.dec.com
Phone: 508.490.8011
Principles.

Task-specific Reasoning, Subsumption Architecture, Reactive
Planning, Autonomous Robots.

The subsumption architecture [Brooks 1985] has been proposed
as an effective approach for the construction of robust, real-time
control systems for mobile robots. To investigate its strengths
and weaknesses, a simulation of the architecture was developed:
the Subsumption Architecture Tool (SAT). This simulation
allows various models of system behavior to be quickly built and
tested. During the building and testing of the Subsumption
Architecture Tool, issues related to some architectural features
became evident:

* Level of commitment of each layer

* Code redundancy

* Problem decomposition and programming style
* Complexity of large systems

¢ Abstract reasoning capabilities

The effects of these issues are presented with respect to the
design and implementation choices of two sample layers of
behavior. These layers are used to illustrate considerations that
should be taken into account (1) when a project team is
considering the use of the subsumption architecture or (2) when
a subsumption architecture-based system is being designed and
implemented.

Research

Simulation of an autonomous, mobile robot in a warehouse or
factory environment.

Common LISP

1 (one) person-year

93

CH2712-8/89/0000/0093$01.00 © 1989 IEEE

Experiences with the Subsumption Architecture

John E. Arnold
Digital Equipment Corporationl!
295 Donald Lynch Boulevard DLB12-2/D4
Marlborough, MA 01752

1 Introduction

The development of autonomous systems —
systems that are able to act and attain goals without
human intervention — continues to be a goal of much
research in the "artificial intelligence” community.
This research has shed light on the requirements for
a truly autonomous system. Attempts to implement
simple systems based on these requirements have
resulted in proposed architectures that are designed
specifically for autonomous robots.

The current work evolved from the desire to
review the proposed architectures and develop a basis
for their quantitative comparison [Dean 1987]. This
research uses the Subsumption Architecture Tool
[Arnold 1988], a simulation of Brooks' subsumption
architecture [Brooks 1985], to investigate the
architecture's utility in the development of a few
simple behaviors. This investigation has resulted in
the identification of five issues which should be
considered when one is considering the use of the
subsumption architecture in their system or when a
subsumption architecture-based system is being
developed:

¢ Level of commitment of each layer

* Code redundancy

¢ Problem decomposition and programming
style

¢ Complexity of large systems
* Abstract reasoning capabilities

The domain for the sample behaviors is a simulation
of low-level actions that a mobile robot in a warehouse
would routinely encounter.

1This work was completed while the author was at the Brown
University Department of Computer Science as & participant in
Digital's Graduate Engineering Education Program. The
author would like to acknowledge Tom Dean and others at the
Brown CS Department for their assistance during the course of
this work.

94

1.1. The Subsumption Architecture

The subsumption architecture [Brooks 1985, 1986,
19871 is a result of an investigation into the
requirements for and implementation of a control
system for an autonomous mobile robot. The
architecture results in the creation of simple systems
that react to complex environments. This type of
system can be traced to Simon's "Parable of the Ant"
[Simon 1969].2

Brooks has identified the following requirements
for an intelligent, autonomous, mobile robot [Brooks
1985]: the ability to pursue multiple goals, the ability
to respond to multiple sensors with varying degrees
of accuracy, robust performance, and extensibility.
To meet these requirements, Brooks has proposed
and implemented a scheme where the tasks to be
achieved (by the robot) are decomposed into levels of
competence. Each level of competence represents a
complete, working behavior which the robot can
successfully execute. As more complex problems are
tackled, new levels of competence are layered on top
of the existing levels without altering the underlying
layers. In this process, each added layer subsumes
the existing layers. Thus, the term Subsumption
Architecture.

Each level is built of simple finite state machines
augmented with local memory. Conceptually (and in
some cases, in reality), the finite state machines all
operate in parallel; there is no central flow of control
and there is no shared, global memory. These
machines (called modules) are allowed to
communicate by passing simple messages along

wires.3 Once programmed, debugged, and wired, a

20ther examples of reactive systems can be found in [Fox 1984],
[Kaelbling 1986], [Firby 19871, and [Sanborn 1987].

3 In [Brooks 1985), these messages are portrayed as arbitrary
LISP data structures. In practice, however, it is best to think of
them as somewhat more constrained. In keeping with the spirit
of the architecture, the messages should be something that really
could be passed along a wire. For instance, [Connell 1987] uses
messages that are single bit logic signals.

level is not altered as the robot's behavior is extended.
Instead of altering the existing levels, new levels are
allowed to override existing behaviors. This is
accomplished by either inhibiting the outputs or
suppressing the inputs of the subsumed levels.

Inhibition and suppression are two methods of
allowing a higher-level module to exert some control
over a lower-level module. Inhibiting a module's
output allows one module to prohibit another module
from sending a message or activating an effector
such as a drive motor. Suppressing a module's input
allows one module to prevent another module from
receiving a message that was sent to it and provides a
means for a higher-level to control behavior into a
lower-level module by injecting data (perhaps fic-
titious, perhaps slightly altered) into the lower-level
module's input. Inhibitors and suppressors must be
wired into the web of modules in a manner similar to
the communication links described above.

2 Experiments with the Subsumption
Architecture Tool (SAT)

BRIE (Brown Robotics Implementation
Environment) is a simulated robotics environment
developed at Brown University [Dean 1987a]. It is
intended to be used as a test bed for various robot
control and robot problem-solving techniques [Dean
1987a]. BRIE consists of subsystems that provide
capabilities such as spatial representation and 3-D
modeling, discrete-event simulation control, robot
emulation at the sensor and effector level, and robot
control system simulation. The Subsumption
Architecture Tool is an example of one of the robot
control systems provided to the BRIE user.

One of the experimental systems that has been
simulated with the Subsumption Architecture Tool
begins with two layers of primitive behavior. At the
lowest level is a set of controller modules that provide
access to the effectors for variables such as
acceleration and steering direction. The next highest
level is a wall-finding and avoidance layer in which
messages are sent to the controller layer in order to
move towards an object that seems to be a wall
without hitting it.

These two levels are presented as an example of
the types of interaction that one may want to
implement in a system. This example shows one
way in which a robot's behaviors can be decomposed
into discrete layers and how intra- and inter-module
communication can be used to build increasingly
complex tasks. Source code for the SAT
implementation of these layers can be found in
[Arnold 1988].

2.1. The Controller Layer

The modules and the wires in the controller layer
implement behaviors which process requests dealing

95

with the robot's effectors. The level of competence
represented here is the ability for the robot to attain a
specified velocity and orientation. A "panic” stop that
models a hard braking condition is also provided. In
order to realistically represent the processes which
are used to reach a target velocity and orientation,
additional modules that model acceleration and turn
radius are used. A schematic of this layer is shown
in Figure 2-1.

2.2, The Wall Finding and Avoidance Layer

This layer provides a simple facility for finding
possible walls and heading towards them. In case
obstacles are met on the way or in case the robot's
speed gets it to a wall more quickly than expected, a
simple avoidance module is also provided. These
modules only affect the robot controllers via messages
sent to modules in the Controller layer. A schematic
of this layer is shown in Figure 2-2.

3 Results and Observations

Building the examples presented in Section 2
provided an opportunity to investigate the utility of the
subsumption architecture. One of the advantages of
a simulated subsumption architecture is the ability to
experiment with different approaches and the effects
of different constraints without having to take the
time to build the robot itself. One can successfully
argue that the full ramifications of these design
decisions are not fully understood until the fully
realized system is built and operating in its intended
environment. However, by experimenting with
various strategies in an easy-to-manipulate
environment such as BRIE, some ideas can be
eliminated in the early stages thus saving time for a
better implementation of the chosen strategy.

The examples of Section 2 are not intended to be
the epitome of subsumption architecture
programming. The strategies implemented in the
Controller and Find WalV/Avoidance layers were
chosen because they are different from the examples
presented in [Brooks 1985]. By presenting an
alternative view of the architecture's use, it is hoped
that the reader familiar with the existing sub-
sumption architecture literature will be able to
recognize the utility of the SAT as an investigative
tool. A different approach was also chosen in hopes
of getting a better understanding of the strengths and
limitations of the subsumption architecture.

During the building and testing of the
Subsumption Architecture Tool, some issues related
to the architecture became evident. These issues,
discussed in the next five sections, are related to the
following areas:

Level of commitment of each layer

Code redundancy

Problem decomposition and programming style
Complexity of large systems

Abstract reasoning

e e o o o

3.1. Level of Commitment of Each Layer

One of the distinguishing features of the
subsumption architecture approach to system
building is the strong commitment made by the

implementor when each layer is deemed "complete.”
The strength of this commitment is stated as follows:

"We start by building a complete robot control
system which achieves level 0 competence. It
is thoroughly debugged. We never alter that
system." ([Brooks 1985], p. 7)

The idea that a completed layer will not be altered in
future revisions (except via suppression and
inhibition connections) is critical to the idea that the
use of a subsumption architecture offers a robust
control system. With this commitment, it is argued
that it is rare to experience a loss of competence as
new layers are added. Without this commitment, it
is much more difficult to verify that implementation
changes have not altered previous functionality.

By disallowing the alteration of the code once a
layer has been debugged, the designer of each layer
must exhibit a degree of foresight due to the flexibility
that is lost. This was noted early in the development
of the subsumption architecturet and was
encountered again while using the SAT. It should be
noted that there is only one input line to each of the
three controller modules that are expected to receive
requests from higher modules (request-velocity,
request-orientation, and stop). Since the
architecture only allows one source for each input, it
will not be possible for other modules to place
requests to these modules.

In retrospect, it would have been wiser to design
an interface module for each of these behaviors
which would have more input wires (to be used as
future needs arose) and which would initiate the
applicable operation when a new message was
received at any of those lines. This solution is still not
optimal, however, since a predefined limit of the
number of sources for requests is fixed at the time the
controller layer is implemented.

4 In {Brooks 1985], Brooks notes his dissatisfaction that a level 0
module included a certain output only because it was known to
be needed in level 2. Had this need not been known ahead of
time, another strategy for obtaining the desired behavior would
have been required.

96

trom velocity-request
in head-for-wall
module in
head-for-wall-and-avoid
layer

trom orientation-request
in head-for-wall
module in
head-for-wali-and-avoid
layer

from stop-message
in avoid module in
head-for-wali-and-avoid
layer

target-val. stop-signal target-val.
Velocity- reset-vel. Sto Orientation-
Request P Request
= reset-acc. reset-req. g g = E]
z T = > o
> Reset- stop-req. |] % €
@ > 8 K 3
3 reset-ack. Velocity & H E =
g £ a g 3
= reset-conn. 3 Kl = o
@ e
Set- reset Set-
Velocity Orientation
accet-req. turn-rad-req.
target-val.
Acceleration- | reset-accel. target-val.
Request Set-
- Turn-Radius
- reset-acc. resel-req. urn-Radi reset
>
= Reset-
dé- reset-ack.| Acceleration stop-req.
e reset-conn.

Set-
Acceleration

reset

Figure 2-1: The Controller Layer

orientation-req.

Head-for-

Avoid

stop-message

to target-vaiue
of velocity-request
module in the controller Jayer

to stop-signal
of stop module
in the controlier layer

to target-value
of orientation-request
in the controlier layer

Figure 2-2; The Head for Wall & Avoidance Layer

A better solution that still obeys the architecture
constraints is needed. One approach would call for
the implementation of a "request bus" that would look
like a wire shared by many modules. However, this
approach would seem to violate the assumptions that
an input can have only one source and that there is
no shared global memory. Another solution would
allow us to eliminate the controller layer entirely
by having each layer access the effectors as needed.
This leads to the issue of code redundancy in the
subsumption architecture.

3.2. Code Redundancy

The implementation of the examples shown in
Section 2 resulted in the identification of two areas in
which code redundancy may become an issue in the
subsumption architecture. These areas are the need
for parameterized behaviors (those that follow the
same "rules" but whose exact behavior is determined
by the values of various parameters) and the need for
behaviors that are subsets of a those found in other
layers.

Parameterized Behaviors

In terms of code reusability or integrated circuit
‘real estate", it is desirable to implement a common
behavior only once and then give other layers access
to it. However, providing this functionality within the
constraints of the subsumption architecture requires
a great deal of foresight by the designer. The initial
design must provide sufficient means of access to the
behavior in the manner needed by all future modules
in order to eliminate redundancy.

The decision to implement a controller layer
was based on the desire to develop a fully tested
library of common controller routines. If a good
design for sharing these behaviors cannot be found,
the alternative is to implement identical code within
each layer that needs one of the routines. This
redundancy would greatly add to the complexity of
the code, increase the opportunity for inducing errors
into the system, and increase the storage/hardware
necessary for an on-board implementation of the
control system.

As previously mentioned (in Section 2), the
current implementation of the controller layer
must be changed to meet the goal of minimized code
redundancy if new modules want to use the behaviors
in that layer. Since only two layers have been shown
in the example system, changing the controller
layer is not that great a task (even though it violates
our commitment to freeze a layer once it has been
tested and deemed complete). In a more complex
system simulation, however, redesigning a lower
layer may be neither easy nor advisable.

Subset Behaviors

Consistently and efficiently providing behaviors
that are subsets of behaviors found in other modules
can also raise the issue of code redundancy in the
subsumption architecture. Consider the following
situation that arose during the implementation of a
layer higher than those presented in Section 2.
Presume that a lower level has implemented an
avoidance behavior such that objects within a certain
range will cause the robot to stop. Now, suppose a
higher level wants to get the robot to maneuver
through a doorway that is sufficiently narrow to
trigger the lower level's avoidance behavior. An
obvious solution to this situation is to inhibit the
output of the lower level module that would cause the
robot to stop.

Due to the level of abstraction chosen in the
avoidance behavior described above, avoidance in this
example becomes an all-or-nothing proposition. The
higher level really wants to turn off the avoidance
only for the objects that it is tracking. (In this case,
we assume that the module is deactivating avoidance
of the doorway because it has implemented its own
mechanism for making sure that the robot does not
hit it.) It would be desirable to have the lower level

97

avoidance behavior take effect if another object came
into view.

One can see the problems that arise in this
situation due to the incompatibilities between the
goals of the two layers. The lower layer exhibits a
behavior that restricts the higher layer from
achieving its level of competence. Therefore, the
higher layer has no choice but to inhibit the lower
layer. The higher layer still wants to avoid objects
that are not the doorway, however, so it must re-
implement an avoidance procedure for any object it
detects that is not presumed to be part of the doorway.
Thus, code redundancy has entered into the scenario
due to the similarity (but not an exact match) of goals
in multiple layers.

One could argue that this type of code redundancy
enters into the system due to a design that failed to
provide the right level of abstraction for common
behaviors. Perhaps an omniscient designer could
account for every view of common problems and
provide a correct solution. Since the subsumption
architecture embodies a philosophy that encourages
orderly evolution of system functionality, it should be
expected that parts of the system will be implemented
before all future ramifications of the design and
implementation decisions are known. It is to the
architecture's credit that a well-defined means of
overriding existing system behavior is available to the
implementor. The costs of this flexibility are the
effort and resources used to re-implement and re-test
behaviors that are very similar to those found in other
layers.

3.3. Problem Decomposition and Programming

Style

Before programming a subsumption architecture-
based system, it is important to determine the
general approach to the problem at hand. The
approach that is chosen will guide the decomposition
of the problem into layers and will help specify the
level of competence that should be implemented with
each layer. For instance, Section 2 showed the two
lowest layers from a decomposition that calls for a
wall-following layer and a doorway-detect-and-
traverse layer to be added next. Even though the
subsumption architecture's evolutionary capabilities
allow one to pick a level of competence and
implement it, early use of the SAT showed that
rushing into implementation of the first levels
without attending to the overall problem decompo-
sition leads to an ad hoc design that is neither
efficient nor easy to extend.

One of the difficulties that arose during the early
use of the SAT concerned the lack of documented
criteria on which to base the decomposition decisions.
The examples in the literature (e.g., [Brooks 1985],

[Brooks 1986b], [Connell 1987]) show successful
decompositions in varying degrees of detail.
Unfortunately, there is little explanation of why the

chosen decompositions were used. It would be useful
to know if other decompositions were attempted and
what features and/or decisions led to the better
designs. For instance, all of the examples (including
those presented in Section 2) include some form of
avoidance as a very low level behavior. It would be
helpful to know if there are reasons other than the
intuition of the designer that led to this decision.

Once the decomposition has been chosen, the
programming can begin. Programming a
subsumption architecture-based system involves a
local view of activity (i.e., the finite-state machine
within a module) and a more global view (i.e., the
communication between modules and layers). As
with any programming activity, a style of
programming emerges with continued use. The
examples in the subsumption architecture literature
are useful guides for a beginner but do not directly
advocate a particular style.

The small number of language constructs for the
finite-state machine require each user to develop a
method for concepts such as do-while, do-until, and
wait-for-condition. While the finite-state machine
language offers a great deal of expressive power in a
small language, the fact that each user must adopt or
develop a consistent style places a somewhat larger
burden on the programmer than programming
languages that encourage a program style by
providing commonly used program constructs. This
point may be minor but in a complex system that is
being implemented over time by a team of people, it is
important that one's code be easy to understand (or
that accurate documentation of the intention of the
code is provided; preferably both). This encourages
others to understand the original intention and will
allow better decisions about the future use (or
suppression or inhibition) of the functions provided.

The subsumption architecture provides some
flexibility in terms of inter-module communication.
The semantics of the event-dispatch and
conditional-dispatch forms are well defined in
terms of how new messages are handled by a
module. There are no rigid requirements that dictate
the style of message sending, however. In fact, two
different communication styles have emerged
[Cudhea 1988]. One style sends a message over a
wire only once. The alternate style "strobes” (i.e.,
repeatedly sends) the message for a fixed duration or
until some desired activity has been noticed.

The former style, sending a message only once, is
used in the examples shown in this paper. It
provides an economy of messages and thus reduces
the use of system or module communication
resources. This style also requires more attention to
the possibility of losing messages. Thus, the design
may call for tighter loops around the states in which
messages are detected. To accommodate these tight
loops, the problem may be decomposed further to
provide for minimized message loss (as in the case of
the velocity-request and orientation-request

modules). The latter style, repeatedly sending
messages, minimizes message loss but uses more
system or module communications resources. This
style may result in fewer modules (since
decompositions such as those explained above are not
as necessary); but this can result in more complex
modules.

The Subsumption Architecture Tool leaves the
choice of communication style to the user. The choice
of style, however, will affect the programs written for
the modules. It should also be noted that the styles do
not necessarily mix well. Consider the
orientation-request module. It is implemented
as a tight loop in order to lose as few messages on the
target-value input as possible. Whenever a new
message is detected on the input, the set-turn-
radius module is reset and the new target value is
passed on to the set-orientation module. This
works fine for the expected circumstances; that is,
situations in which new target orientations are re-
ceived infrequently.

If a higher layer was "strobing" the orientation
request on the target-value wire, the behavior
could be noticeably (and detrimentally) affected. As
the higher layer strobes its orientation target value,
the orientation-request module would be seeing
the repeated messages and constantly resetting the
set-turn-radius module. This resetting could
result in a situation where the turn-radius controller
never steps to the next value. The result of this is that
the robot's current turn radius would never be
altered. Thus, the desired effect would never be
attained.

From this example, one can see that it is
necessary for a single style of communication to be
used on each wire. To minimize errors and
confusion, it is probably best to use a single style for
the entire system.

3.4. Complexity of Large Systems

Figures 2-1 and 2-2 indicate the complexity of the
systems that can be easily built with the subsumption
architecture. The two layers in Section 2 accomplish
very little when compared to the requirements of an
autonomous system that attempted to solve complex
problems in a real environment. It is easy to imagine
the size of a module schematic diagram growing to
wall size or larger for a complex system. This
reveals a fundamental dichotomy in the architecture:
the simplicity of each module and the complexity of
the overall system.

When implementing an individual layer, it is
possible to decompose the level of competence into a
set of modules that simply reflect the behavior of that
layer. Programmers are able to attain reasonably
good results at this level of detail in a complex design.
Thus, the layer-level design, although requiring
discipline and care, is not the critical issue in
managing system complexity.

Managing the relationships between layers is a
critical issue as the number of layers and the scope of
the layers grows. In order for a new layer to be added
to the system, it is important that the
designer/implementor of that layer understands the
existing layers. This knowledge is required for two
reasons: (1) the user may be able to use an existing
behavior to his/her advantage and (2) the user may
have to suppress or inhibit some modules in order to
attain the goal of the layer he/she intends to
implement.

Since the level of information presented in a layer
is still quite detailed (e.g., modules and wires),
something more abstract is needed to communicate
the intentions and effects of each layer. At the very
least, this information must be made available to the
programmer. To accomplish this, it is desirable to
determine a means to convey the system's knowledge
in a manner that maps easily to the user's "mental
model" of the system. This investigation into higher-
level system modelling and representation could
provide a transition to the longer-term needs of in-
creasingly intelligent systems. As suggested in
[Georgeff 19871, increasingly capable autonomous
systems will require more explicit representation of
module/layer goals, intentions, knowledge, and
ability.

3.5. Abstract Reasoning

All of the subsumption architecture applications
known to the author involve relatively low-level robot
control. Admittedly, the behaviors are still quite
impressive given the limited machinery required.
Whether the architecture can be applied effectively to
more abstract problem solving remains an open
question. This question will be answered in the
future as the use of the subsumption architecture
continues to grow and larger problems are tackled.

The successful use of the subsumption
architecture in higher-level planning will require the
effective solution to a number of constraints imposed
by the architecture. The experience to date with the
Subsumption Architecture Tool would indicate that
at least two areas will need to be addressed as the
architecture is used to tackle more abstract problems:
(1) communications between modules and (2) shared
global memory.

The efficiency of the communications scheme
(i.e., the use of dedicated wires between modules) will
be challenged when higher-level problem-solving
modules need to reason about complex
representations of the world, other agents, etc. The
current hardware implementations of subsumption
architecture-based systems ([Brooks 1986a], [Connell
1987]) are built with very low bandwidth (sometimes
even single bit) communications. More complex
representations will require much higher band-
width. At a higher bandwidth, the issue of

99

predefining reasonable interconnections at lower
layers for use by not-yet-implemented higher layers
will become even more critical than it is currently.

Complex representations will also challenge the
requirement that there be no shared global memory.
This restriction will require each module to keep its
own copy of any needed representation (e.g., a map).
In addition to the communication problem addressed
above, this constraint also could present a space
problem as more powerful modules need to keep
more knowledge and/or data at hand in order to
make appropriate decisions. This restriction also
precludes the use of traditional database technology
that could provide shared, persistent objects to the
various modules. A tradeoff between the robustness
offered by the lack of shared, global memory and the
need to minimize redundant data storage may be
necessary. In one possible scenario, the minimal
"survival" layers that require the most robustness
could obey the restriction while higher layers that
perform more abstract computations could relax the
restriction.

4 Summary

This research has resulted in the production of a
tool that allows experimentation with the
subsumption architecture in a simulated setting: the
Subsumption Architecture Tool. The use of the
simulated environment encourages the user to at-
tempt many different decomposition and
implementation strategies before committing the
design to hardware. Since the SAT implements the
complete syntax and semantics of the architecture as
originally described in [Brooks 1985, the exper-
imenter familiar with existing implementations can
transfer the results of the simulation to actual system
implementation with minimal conversion difficul-
ties.

The use of the Subsumption Architecture Tool has
highlighted some areas in which the architecture
will be challenged as the goals of systems being built
are progressively extended to include more abstract
reasoning capabilities. These areas are (1) the level
of commitment made by each layer, (2) the code
redundancy that can occur, (3) the effect of problem
decomposition and programming style decisions, (4)
managing the complexity of large systems, and (5)
the ability to provide abstract reasoning capabilities
within the constraints of the architecture.

5 References

[Arnold 1988]

[Brooks 1985]

[Brooks 1986]

[Brooks 1986al

[Brooks 1986b]

[Brooks 1987]

[Connell 1987]

[Cudhea 1988]

[Dean 1987]

Arnold, John E., "SAT: A
Subsumption Architecture Tool for
Simulated Robot Control”, Master's
Thesis, Brown University

Department of Computer Science,
May 1988.

Brooks, Rodney A., "A Robust
Layered Control System For a
Mobile Robot", MIT AI Memo 864,
September 1985.

Brooks, Rodney A., "A Robust
Layered Control System For A
Mobile Robot", IEEE Journal of
Robotics and Automation, IEEE
Press, April 1986.

Brooks, Rodney A. and J. Connell,
A. Flynn, "A Mobile Robot with
Onboard Parallel Processor and
Large Workspace Arm",
Proceedings of AAAI-1986, Morgan
Kaufmann Publishers, Inc.,
August 1986.

Brooks, Rodney A. and J. H.
Connell, "Asynchronous Dis-
tributed Control System for a Mobile
Robot", Proceedings of SPIE
Cambridge Symposium on Optical
and Optoelectronic Engineering,
Cambridge MA, October 1986.

Brooks, Rodney A., "A Hardware
Retargetable Distributed Layered
Architecture for Module Robot
Control", Proceedings of IEEE 1987
International Conference on
Robotics and Automation, Raleigh
NC, IEEE Press, April 1987.

Conrell, Jonathan H., "Creature
Design with the Subsumption
Architecture", Proceedings of
IJCAI-1987, Morgan Kaufmann
Publishers, Inc., August 1987.

Cudhea, Peter and J. Connell, MIT,
personal communication, January
1988.

Dean, Thomas L. "Benchmarks for
Research in Planning”,
Proceedings of AAAI-1987
Workshop on Al and Simulation,
Seattle WA, July 1987.

[Dean 1987a]

[Firby 1987]

[Fox 1984]

[Georgeff 1987]

[Kaelbling 1986]

[Sanborn 1987]

[Simon 1969]

Dean, Thomas L. and K. Basye, M.
Lejter, T. Engel, J. Arnold, "BRIE:
The Brown Robotics
Implementation Environment”,
Brown University, Department of
Computer Science Technical
Report, Providence RI, August 1987.

Firby, R. James, "An Investigation
into Reactive Planning in Complex
Domains", Proceedings of AAAI-
1987, Morgan Kaufmann
Publishers, Inc., July 1987.

Fox, Mark S. and S. Smith, "The
Role of Intelligent Reactive
Processing in Production
Management"', In 13th Meeting and
Technical Conference, CAM-I,
November 1984.

Georgeff, Michael and A. L.
Lansky, "Reactive Reasoning and
Planning", Proceedings of AAAI-
1987, Morgan Kaufmann
Publishers, Inc., July 1987.

Kaelbling, Leslie Pack, "An
Architecture for Intelligent Re-
active Systems", Proceedings of
Workshop on Planning and
Reasoning about Action, June-July
1986.

Sanborn, James C. and J. A.
Hendler, "A Model of Reaction for
Planning in Dynamic
Environments", Proceedings of
Knowledge-Based Planning
Workshop, Defense Advanced
Projects Research Agency, Austin
TX, December 1987.

Simon, Herbert A., The Sciences of
the Artificial, MIT Press, 1969.

