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Abstract

An emerging paradigm in solving the classical motion
planning problem (among static obstacles) is to capture
the connectivity of the configuration space using a finite
but possibly large) set of landmarks (or nodes) in it
14, 1, 5, 7, 15]. In this paper, we extend this paradigm
to manipulation planning problem, where the goal is to
plan the motion of a robot so that it can move a given
object from an initial configuration to a final configu-
ration while avoiding collisions with the static obsta-
cles in the environment. Our specific approach adapts
Adraine’s Clew Algorithm that has been shown effective
for classical motion planning problem [14, 1]. In our ap-
proach, landmarks are placed in lower dimensional sub-
manifolds of the composite configuration space. These
landmarks represent stable grasps that are reachable
from the initial configuration. From each new landmark,
the planner attempts to reach the goal configuration by
executing a local planner, again in a lower (but differ-
ent) dimensional submanifold of the composite configu-
ration space. We have implemented this approach and
present initial experiments with a simple 2-dof planar
arm among polygonal obstacles. This simplified domain
allows us to better understand the approach.

1.0 Introduction

An important problem toward achieving autonomous
task planning systems is that of automatic manipula-
tion planning [10]. One version of this problem can be
stated as follows : plan the motion of a robot so that
it can move a given object from an initial configuration
to a final configuration while avoiding collisions with the
static obstacles in the environment. It is well known that
manipulation planning is computationally more complex
than the classical motion planning (piano mover’s) prob-
lem [10]. 1t involves dynamically changing grasp and un-
grasp motions that change the composite configuration
space. It is known [10] that the manipulation problem
can be decompsed into a sequence of subpaths — lying
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in lower dimensional submanifolds — seperated by grasp
and ungrasp operations. These paths are called transfer
and transit paths [11, 8]. Consequently, a manipulation
path is composed of a sequence of transfer and transit
paths. Let us introduce the problem using Figure 1.
The goal for the planar arm is to take the rectangular
object from the initial position (at the top of the figure
la) to the final position (at the bottom). To move this
object, the arm must grasp (with the end-effector) one
of the object’s edges as shown in 1b. The robot then
moves toward (transfer path) the goal but the obstacles
prevent the robot from continuing (¢). The robot then
ungrasps the object and then regrasps the object at a
new grasp (transit path) (d). This new grasp permits
the robot to reach the goal position (e and f).
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Figure 1: A manipulation path for a 2-dof planer arm.

Some previous works have addressed related prob-
lerns in simple domains. [17] was the first work dealing
with manipulation planning for a PUMA equipped with
a parallel jaw gripper. Their underlying planner, how-
ever, was limited to manipulators with 3 or 4 degrees
of freedom. In [12], the case of a circular movable ob-
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ject and a circular robot in 2D polygonal environment
is investigated. A cell decomposition is generated and
then used to obtain a finite number of nodes for rep-
resenting the accessible configurations. The number of
the nodes depend on the number of vertices of the ob-
stacles. The problem 1s then reduced to an exploration
of the graph. An algorithm for a polygonal mobile robot
with multiple movable objects is presented in [2]. This
implementation uses a finite number of grasps and place-
ments for each of the movable object. A manipulation
graph with a finite number of nodes is constructed incre-
mentally to solve the problem. Note that this approach
breaks down for redundant robots, i.e., if the possible
configurations of the robot for a given grasp are infinite.
In [8], dual-arm manipulation planning in 2D environ-
ments is considered. A finite number of grasp points
are defined for the movable object and a randomized
planning thechnique [3] is used to obtain a free path
for the movable object. During the search, the plan-
ner makes sure that at least one grasp exists for each of
the robots (using inverse kinematics). The robots follow
the trace of the grasp point trying two keep the same
type of grasp. When the trace can not be followed any
further, a transit path is executed to change the grasp.
[9] has demonstrated some manipulation tasks in sparse
3-dimensional environments with multiple manipulators
for PUMA 560 type manipulators. The approach, how-
ever, needs that inverse kinematics solution be available
for each of the arms.

One of the emerging paradigms (although there are
differences in the specific approaches) in solving motion
planning problems is to capture the connectivity of the
configuration space using a finite (but possibly large) set
of landmarks (or nodes) in it [14, 1, 5, 7, 15]. [14, 1] pre-
sented an algorithm, called Ariadne’s Clew Algorithm
(ACA) that can be used to search for a path in a con-
tinuous domain. It is composed of two sub-algorithms :
EXPLORE and SEARCH. The EXPLORE algo-
rithm “explores” the reachable space from a given ini-
tial point by placing landmarks in it. The landmarks
are so placed that a path from the initial position to
any landmark is known. The SEARCH algorithm is a
local planner that verifies if the goal configuration can be
reached from a newly placed landmark. Both algorithms
are expressed and solved as optimization problems us-
ing a special set of paths — the Manhattan paths. The
completeness of this algorithm has been proved in [1].

In this paper, we extend this paradigm to manipula-
tion planning problem. Landmarks are placed in lower
dimensjonal sub-manifolds of the composite configura-
tion space. These landmarks represent stable grasps
that are reachable from the initial configuration. From
each new landmark, the planner attempts to reach the
goal configuration by executing a local planner, again in
a lower (but different) dimensional submanifold of the
composite configuration space. Our initial experiments
are with a simple 2-dof planar arm among polygonal ob-
stacles. In our preliminary examples, a pre-defined set
of grasp points on the movable object is given. Further-
more, it is assumed all collision-free placements of the
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movable object are stable. This simplified domain al-
lows to better understand the approach. We are now in
the process of extending the approach to realistic 3-D
environments and manipulators with many degrees of
freedom.

Our approach offers the following advantages over
the previous methods for manipulation planning (i) it
does not assume that an inverse kinematics solution for
the manipulator is available, and (ii) it does not assume
a finite number of robot configurations for each grasp,
i.e., it is directly applicable to redundant manipulators.

1.1 Basic Definitions and Problem
1.1.1 Notation
Let W denote the workspace -of the robot 4. A con-
figuration of the robot in W is completely specified by
Ga = (z1,22,...,2n), where n is the number of degrees
of freedom of A. C 4 denotes the configuration space of A
[13]. The static obstacles in W are denoted by B;=1 2,3, ..
and the movable objeci by M. Let gaq = (y1,y2, ..., Yi)
denote the relative configuration of the object refence
frame Faq to the world’s reference frame Fw. The con-
figuration space of M is denoted by Caq. We will make
the assumption that C4 and Caq are compact (closed
and bounded) sets.

The configuration space of the entire system is then
C =C4 x Caq and its dimension is (n + k). The projec-
tions of ¢ € C in C4 and Caq will be denoted and defined
as follows : w4 i GEC— Gy ECH

Tm G EC = dm ECM

1.1.2 Transit, Transfer and Manipulation Paths

Let "W a4 denote a stable configuration of M described
w.r.t. Fy. The submanifold Cf,é‘giie C C is defined as
Ciietle = {g € Clma(d) ="qa}. A transit pathis a con-
tinuous map ¢ : {0,1] — Céﬁgﬁe, When the robot is mov-
ing with the movable object grasped in its gripper, the
configuration of M relative to the gripper remains con-
stant and the configuration of M w.r.t Fyy is changing.
Let us denote these relative configurations by ¢§aq and
Waa tespectively. Moreover, let ®(Wa) be the func-
tion that transforms the configuration of M from Fyy to
the gripper’s reference frame F¢. For a given grasp con-
figuration “§uq, we define the sub-mainfold C?f;/:p C
as cg’"qfijp = {§ € Cl®(7m(§)) =°Gm}. Note that the
dimension of this subimanifold is n (the number of dof of
A), and that ® depends on §4. A transfer path is contin-
uous map 7 : [0,1] — €&, Let CB denote the configu-
ration space obstacles. The free space Csr.. Is defined as
C\CB. A free transfer path ¢ (resp. free transit path, ¢)
is then defined as a mapping ¢ : [0, 1] — Cfree N Cwy,,-
A single manipulation path & is defined as a concate-
nation (product) [10] of a free transit path ¢ and a free
transfer path 7, 6 = ¢x 7. A manipulation path of order
¢, denoted by &% is defined as a concatenation of £ single
manipulation paths, i.e., 6% = &1 % 64 % ... 6.
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Let P = ™31,V ¢a,...,"Y G} be the set of stable
placements of M in W. The entire sub-mainfold gener-
ated by P is then, CP = CC&%‘; U c;g;ifz U...u cs&g‘;‘jk.
Similarly, let G = {¢1,92,...,9m} be the set of grasps
and {%4am,,% Gms, - ,% G, } the set of relative posi-
tion of M w.r.t. Fg resulting from G. The set of sub-
manifold generated by G is then, €G = CZ*? uCy**P U

Iy dnmy
ucge

The manipulation path planning problem can now
be stated as follows : Given an initial configuration
do € Cpree and a desired final configuration gaq. of M,
a set of stable placements, P, and a set of grasps, G,
find a manipulation path ¢* such that 6%(0) = ¢, and

T"M(&k(l)) = qMe-
1.2 Overview of the ACA

The algorithm is composed of two sub-algorithms :

EXPLORE and SEARCH. Let ¢, = (§a,,"Y dats)
be the initial configuration of the system. EXPLORE

tries to identify the set of reachable configurations in
CP N CG from §,. It does so by placing landmarks in
CG N CP in such a way that a manipulation path from
go to any landmark is known. Let L, denote the nt?
landmark, with WdM(W) = wm(Ly) and GQM(,L) are the

configuration of M w.r.t. Fy and Fg respectively!. Us-
ing this notation we have that L, € Csiable nca*r |
12 () M)
EXPLORE tries to spread the landmarks all over the
connected space from §,. To do so, it tries to put the
next landmark as far as possible from the current ones.
By construction, a new landmark is reachable from at
least one of the previously placed landmarks via a single
manipulation path. Each time we obtain a new land-
mark, we use SEARCH to try to go to the goal. The
SEARCH algorithm, a fast local planner, tries to plan
a free transfer path from the current landmark L, to the
final configuration " g4, by minimizing the distance be-
tween the current configuration of M and jaq,; if it
fails another landmark is placed by EXPLORE. Es-
sentially, a tree of landmarks is formed with §, as the
root. Figure 2 shows the tree and the configurations
where the landmarks have been placed. The submani-
folds of CP are schematically represented by a rectangle
and those of CG by an ellipse. Each of the landmarks
(drawn with a e), is connected to its parent by a single
manipulation path (continuous line). In order to give an
idea of the reachable configurations in CP N CG from a
particular landmark, we have used dashed rectangles to
show the reachable configurations from the root (shown
as 0). The number of different grasps reachable from a
placement is then the number of ellipses intersecting the
square and the number of different placements reachable

INote that W‘fM(n) represents the nt? placement correspond-

ing to Ln whereas Y4, represents the n*” placement in P, and
in general (in fact, often) these will be different. Similary, we
have written GéM(n) to specify the grasp corresponding to Ly

and make the distinction with the nt? grasp of G.
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Figure 2: Schematic representation of the placement of
landmarks.

with a given grasp is the number of rectangles intersect-
ing the ellipse.

More formally, let £,, denote the set of existing land-
marks at step n, and X, the set of single manipula-
tion paths which start from the configuration corre-
sponding to one of the landmarks, L; and terminate
at the grasp submanifold j accessible from L;, i.e.,
L, ={6:6(0)=L; € L, and 6(1) € CI*" NCP}.

G qM]
To illustrate, suppose, n = 2 and Ly = {Ly, L,}.
Now given a manipulation path & € Ly (that 1s, a sin-
gle manipulation path starting either at L, or Lj), the
algorithm tries to choose a path &5 that maximizes the
distance? ||6(1) — L2||. The extremity of this path gives
us La, le., 0y @ maxXsex, ming, ez, 16(1) — L;]], and
L3 = 5’2(]) and L3 = Ly U {Lg}.
We can therefore express the EXPLORE algorithm
as an optimization problem :

EXPLORE(n) = { Maxinize 1£n = (1)l

It has been shown in [1] that if 3G, € CP N CG such
that 7a4(ds) = date and ¢, 1s an accessible configuration
from G, then Ve > 0 3N such that at the N*% iteration
of EXPLORE, exists a landmark at a distance ¢ from
Go-
* SEARCH algorithm is essentially a fast local plan-
ner that verifies if a given configuration is reach-

able from a landmark. Let ¢ denote the de-
sired resolution and we call the SEARCH algorithm,

SEARCH_-TRANSFER(L,,"Y Gase) which returns the
value true if it finds a path and false otherwise. The
ACA is written as follows :

ARIADNE'S_CLEW (§o,” da1e)

begin
n=10;
Ly ={L1=4do};
do
n=n+1;

Place a new landmark L4, with EXPLORE(n);

£n = ||Ln+1 - Lall;

Cn-{«l = Ln U{Ln+1}i

transfer = SEARCH_TRANSFER(Ln+1,"Y das)
while( ~transfer and (e, > €))

2Note that this is a distance between a point and a set.
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if (transfer)
return(historyof(Lp+1));
else not path exist with resolution &;
end

The “history_of” routine is simply a concatenation
of the manipulation paths of the ancestors of L,4, and
the transfer path found by SEARCH.

1.3 Implementing FEXPLORFE and

SEARCH with Manhattan Paths

1.3.1 Manhattan paths

As is probably apparant by now, we will implement EX-
PLORE and SEARCH as optimization problems, how-
ever, with a special class of paths — the Manhattan paths
which consist of moving one robot link at a time. The
main motivation i considering Manhattan motions is
that (i) they can be represented by a vector of R™,
(note that in general a path is represented by a func-
tion not a vector), (ii) they define a naturally redundant
search space which is well suited for writing the trajec-
tory planning problem as an optimization problem in
IR", and (iii) the class is resolution complete in that if
a trajectory exists from one configuration ¢, to another
Jo and the minimal distance of this trajectory to the C-
obstacles is ¢ > 0, then there exists a Manhattan path
from ¢, to ¢, [1].

Given a continuous space X C IR"™ and ¢,
(¢1,...,2n) € X, we define a single Manhattan path
in X starfmg from go as the function  : [0,1] — X
where for o € [0, 1] :

() = (m(@),v2(a), ..., vn(@)) € X and
i for O<a<£’iﬁ
7i{e) = zi+ i+ (nka—1+1) for M<a<
z; + A for <a<1

with A; € IR being the range of motion for joint 1

and is carried out in duration % % is therefore com-
,Ay). Note that the

pletely defined by ¥ = (A1, A, ...

semantic of this path is “move link 1 a distance A;”
followed by “move link 2 a distance As”, and so on.
Furthermore, the product of £ single Manhattan paths
in X is a Manhattan path of order £. Let ¢, € X be a
point in X. The Manhattan path space of order k at ¢,,
denoted by Q(X;d,, k) is the set of all the Manhattan
paths of order £ < k starting at the point §,.

We now denote the Manhattan path space of order
kin "‘t““" starting at ¢ = (Ga,”" Gam) as Q(C”Zﬁe, g, k).
For brewty, we simply use Q. Let us consider the config-
urations of the robot and the movable object shown in
the figure 1. We can graphically represent the space of
Manhattans paths of order 1 (¥ = (A1, A3)). Note that
Ay, Ay € [=27,27] and that the space Q(Cwy, 54, 1) can
be represented by [—2#,27] x [—27,27] and is shown
in Figure 3. The space is formed by two complemen-
tary subsets, denoted by QB = {* € Q : Ja € [0,1] :

¥ () € CBY, and Qe = Q/QB. Note that QB (Qfree

resp.) depends on L”‘;“e,q and k. Because of brevity
we are not showing it explicitly in our notation. For the
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Figure 3: The QB and Q.. for a Manhattan path space
of order 1.
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Figure 4: Potential space obtained by f,.

initial configuration of the robot shown in figure 1, the
resulting QB (dark region) and Q.. (white region) are
shown in figure 3.

A similar construction is used to define Manhattan
space for the transfer trajectories.

1.3.2 Planning Paths: Optimization in Man-
hattan Path Space

Let o = (§a,,qwa,) be a configuration in CP and

“Gae be the configuration for a grasp of M. The tran-

sit path planning problem can now be stated as a mini-
mization problem :

. kG A
nnn”v"Eﬂ(Cf,\’}“A“e;%,k) Ja(#",% Gate) where
M

= { 12(57*(1)) = Gl
+oo

5% € Qppee
otherwise

Ja(3*.% daq

Clearly, if there is a transit path fy* € Qpree tak-
ing the robot to the goal grasp configuration then
fa(%8.9 Gans) = 0. See figure 4 for the potential
space defined by this function over Q(CquM;(jo,l) =
[—2m,27] x [=27,2x]. For the simple planar arm, the
fa 1s equivalent to the distance between the end-effector
and the grasp point (see figure 1), however, for a real
robot, a pre-shaping of the grasp would be easier to
find [4].

A very similar optimization formulation exists for
planning transfer paths. Let YW§aq, be the goal place-
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ment of M and g, = (4a.,” dao) € Ci\f;lj’\ie ne qf&?p
an initial configuration. A transfer path from Go tO G
with 7a1(de) =" Game can be computed as follows :
Imn;ykex)(c(g}r:zsp 10 ) Fo(7% W Gar)  where
qM_’)
£ € Qfree

" . 3R(1)) =W ¢ o
Fo3* Y Gana) ={ !_LZQA(,Y @) Trel otherwise

1.3.3 Searching {)f,..: The Bouncing Technique
The actual search space for the minimization problem
is Q. and that the region QB is quite large. 1t would
therefore be computationally efficient to be able to limit
the search explicitly to Qpree. It is clear that all valid
paths in Q.. can be represented by a vector z € Rk
but that not all 2 € IR™* represent a path in Qgree,
since A; € 4% could code an invalid value such that the
path % goes into CB. However, intervals [AT¥" A7)
can be easily obtained (as in [13]) such that VA; € #* €
Qpree, Ai € [AT¥" AT The computation of these
intervals permits us to rewrite the functions v; € #*
so that the resulting paths are always collision-free that
is to map A; in [AT" A7) The basic idea is to
bounce off the obstacle[l1]. Below we give an elegant
mathematical representation of this bouncing in terms
of a periodic function. The periodic function chosen is
a triangular wave with amplitude a = ||JAT**® — AP¥n||
and period 2a. Any z value (along the horizontal axis)
can now be mapped to range [AT" AT%®], We use this
to redefine the manhattan paths 7; as follows:

Ty

for OSQS%—Q

vi(a) = { z; + Triang(a,A;)(no — i + 1)  for ﬁ%} < —:;
zi + A for t<o<1

Note that the range of link (¢ 4+ 1) depends on the
movesof link 1...4, i.e., AT¥] and AT} are functions of
Aj for j=1,2,...,4 Such a use of a periodic function
to define the Manhattan paths permits us to code only
feasible paths; there is no way to code a path belonging
to QB. See how figure 4 is transformed in figure 5. The
advantage of this coding is obvious in that it is well
suited for the optimization technique used to minimize
the functions f, and f3.

1.3.4 Defining Local Planners

We now illustrate simple local planners for transit paths.
The case for transfer paths is similar. Let ¢, be an initial
configuration in Cjree. A local planer for transit paths

can be written as follows :
SEARCH_TRANSIT (Go, G pter k)

begin
41 = §o3
7:=0;
do
1=1i41;

@i =mingkeq,, . fa(3*, date);
distance = fq @i:‘iMo)?
di = @i(1);
while((distance # 0) and (§; # di—1));
if (distance = 0)
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Figure 5: Potential space of f, obtained with the bounc-
ing technique.

then return(®; * @2 * ... * ¢;);
else return(nu!l_path);
end

Note that SEARCH TRANSIT returns the null
path if no path has been found for the grasp “ga,,
re., a local minima has been reached. Moreover, using
bouncing techniques, we have an explicit coding of any
manhattan path 4, € IR®* to a path in Qpree. We
will not go into details of this optimization here, how-
ever, we have used genetic algorithms to carry out this
optimization as in [1].

SEARCH.TRANSIT is now used to build
EXPLORE as follows. A single manipulation
path & starting at L; € L, is generated by a
concatenation of the transit path ¢ obtained by
SEARCH_TRANSIT(L“G(ij), and a transfer path

7 coded by a manhattan path * € Qfree. This trans-
fer path is obtained as follows. EXPLORE randomly
generates my transfer paths with grasp configuration in
G, yielding my transfer paths. The submanifold where 7
is executed depends in ¢(1). Remember that the algo-
rithm SEARCH T RANSIT returns the null path if no
path has been found for the grasp “gaq,. In this case,
the obtained manipulation path will keep the same grasp
that corresponds to L; (i.e. there is no change of grasp).
Furthermore, for each landmark L;, m; transit paths
@i, § = 1,m are generated. Therefore, in all, m; x my
manipulation paths are generated from each landmark.
The manipulation path & that such that (1) is farthest
away from L, is the chosen manipulation path and (1)
gives the n + 1** landmark.

The algorithm EXPLORE can be written as fol-
lows :
EXPLORE(n)
begin

fori=1ton

forj=1tom:
choose a grasp GQM]. € g;
@ij = SEARCH TRANSIT(Li,% g, );
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for k = 1 to my
T, gk = random-manhattan_path_with(@;;(1));
k — (Pi,] * Tz,],lw

& =maxe, ||aw,k(1) L] 5

ICblllJl((})
end

In reality, we use genetic algorithms to solve the
above optimization problems in EXPLORE as in [1].
The above explanation is a high-level description of
this process. In particular, constants mi and my are
related to the number of generations used in the ge-
netic optimization process. The search space X, used
by EXPLOREFE can be represented by : [1,2,...,n] x
[1,2,...,m] x R*" where [1,2,...,n] is the id of the
stariing landmark, [1,2,...,m] the id of grasp in G and
IRF*™ represents the transfer paths.

The example shown in figure | was solved using
the EXPLORE and SEARCH-TRANSIT as explained

qeetiom

1
i UiiS SCCuisil.

Ty [N

Th\/ a})ylu}\llll(bt\ Aull tllll\ VVG/D CbU\J‘LLt
4 minutes on an [PX Sparcstation. About seven land-
marks were needed for this example. Admittedly our
experiments are somewhat preliminary, however, they
show the promise of our approach.

1.4 Conclusions

One of the emerging paradigms in solving motion plan-
ning problems is to capture the connectivity of the con-
figuration space by using a finite (but possibly large) set
of landmarks (or nodes) in it. In this paper, we extend
this paradigm to manipulation planning problem. Our
approach offers the following advantages over the previ-
ous methods for manipulation planning (i) 1t does not
assumne that an inverse kinematics solution for the ma-
nipulator is available, and (ii) it does not assume a finite
number of robot configurations for each grasp, i.e., it is
directly applicable to redundant manipulators.

Our initial experiments are with a simple 2-dof pla-
nar arm among polygonal obstacles. Another assump-
tion is that the movable object is stable in any configu-
ration of the free space. This simplified domain allows
to better understand the approach.

We are now in the process of extending the approach
to realistic 3-D environments and mampulators with
many degrees of freedom. We believe that for enviro-
ments in 3-D, the search for a stable placement (or a
pre-shaping configuration) can be incorporated in the
optimization function. Furthermore, in the current im-
plementation, a local planner is used to to compute the
transit paths. This could be augmented by using EX-
PLORE function for transit paths also.
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