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Interference-Free Polyhedral Configurations
for Stacking

Venkateswara R. Ayyadevara, David A. Bourne, Kenji Shimada, and Robert H. Sturges, Jr.

Abstract—This paper uses a configuration space ¢tspace)
based method to compute interference-free configuration for
stacking polyhedral sheet metal parts. This work forms the
interference analysis module of a stacking planner developed by
us. Parts in a stack should not interfere with each other and should
also satisfy stability, grasping, and stacking plan feasibility related
constraints. We present two techniques to speed up the expensive
step ofe-space obstacle computation. The first technique identifies
orientation intervals (for a convex pair of solids) within which the
topology of face-edge-vertex graph of an obstacle stays the same.
Within this interval, c-space obstacle geometry for one orientation gig 1. A compact stack with 3-D nesting leading to compact yet stable stacks.
can be extrapolated from obstacle geometry for another orienta-
tion. Our experiments show that extrapolation takes an order of
magnitude less than the time taken to compute an obstacle from (from packing and two-dimensional (2-D) layout domains) with
scratch. The second technique computes near optimal interfer- oo piivy concerns (from assembly planning). The user can pro-
ence-free positions for a discrete orientation without having to ~. . > .
compute the completec-space obstacle. Our experiments show \_/lde_ a cost funct|0n_ that a_ddresses stability z_;md/or space uti-
that, for complex sheet metal parts, less than 0.1% of the convex lization concerns. Itis required to compute an interference-free
component pairs are evaluated in order to compute an interfer- configuration that minimizes the user-specified cost function.
ence-free configuration. We describe a configuration space-based ~ Qptimal stacking of polyhedral parts is difficult. Even the
method to compute a list of interference-free configurations that , form, i.e., optimal 2-D layout of blanks on a sheet, with

can be tested to see if they satisfy the above mentioned constraints. -
The cost function is a weighted sum of components that penalize N0 Stability concerns, has been shown to be NP-hard by [1].

floor space utilization and height of center of gravity of parts. Hence, determination of a globally optimal part stack is virtu-
The algorithm is able to pick nested stacks that tend to be stable ally impossible. We have developed a stacking planner [2] that

and compact without having to explicitly enumerate features that uses a “generate and test” approach to generate near opt|ma|

can be nested. It is also able to accommodate flanges in holes (0, oying plans. Such a planner needs tools for interference anal-
reduce the value of the user specified cost function. We use three

test parts to illustrate the effect of the two techniques to speed up YSiS and stack stability analysis. We have presented tools to eval-
c-space obstacle computation. We also show the stacking plansuate stack stability in [2]. This paper focuses on another aspect
generated for three different values of the weighting parameter in  of stacking: generating interference-free part configurations that

the cost function used by the stacking planner. minimize a user-specified cost function. This problem is also of
Index Terms—Computer-aided process planning, configuration interest to other areas such as part nesting, assembly planning,
space, interference, sheet metal, stacking. and packing.
For the purpose of stacking, there are certain qualities that
|. INTRODUCTION have to be captured by the method we choose to compute inter-

o ) ] ference-free configurations. One is the ability to perform three-

T HERE are many applications that require the precise relgmensional (3-D) nesting of parts (see Fig. 1). This often leads
tive placement of pairs of complex polyhedral parts: e.gq stable and compact stacks. Designers often build in features to

packing, nesting, and stacking. Part stacking is especially difijjitate part nesting. Trying to enumerate all features that en-

ficult, because it combines the problem of final configuratiogye nesting can be troublesome. Itis preferable that the planner
seeks out nested configurations. The second quality is the ability
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Of course, a stack of parts is physically realizable only whgranner. We then review previous work on computing set of con-

none of the parts interfere with each other. figurations that result in interference between two polyhedrons
We describe a method to apply configuration spaecgplce) and their use in domains other than stacking. Finally, we present

based techniques used for robot path planning to computeanclusions and recommendations for future work.

near optimal interference-free configuration for a polyhedral

part while adding it to an existing stack (Appendix A contains II. STACKING PLANNER

an introduction t@-space terminology). The final configuration

has the following qualities: A. Global Problem Statement
1) minimizes a user-specified cost function; . Thg problem addre_ssed by t.hel planner involves _stac;king_
2) lies inside a given space of configurations: identical parts. A dgtalled description of the planner is given in
3) avoids interference with parts already in the stack. [2]. Here, we describe a few relevant features of the planner. The

The transfer ofe-space based techniques from robot pat(I;lostfunctionforthe stack is the sum of costs computed for each

planning domain to stacking domain is not straightforwar(ﬁ)artinthe stack. The first two parts of the function penalize floor
Robot path planning involves computation of an interfePace utilization. They measure the planar distance between the

ence-free path between start and goal configurations Ofcr?nterr?f_:_r;]? roor;spici?ng thervertlces zft?ebbound;]ngdt;o\fv OI d
robot. Both start and goal configurations are interference-fré € par .t s co pOTr(]% tﬁ' gou ages pat Sf t?] € pl‘![Sf € t'o a
The focus is on generating information about connectivity Jpe point o, yo, zo). The third component of the cost function

the set of interference-free configurations and not the exants measure of stability. It penalizes the height of the center

surfaces bounding this set. In the case of stacking, the desif &;rawty oileac? aaré. Folr an)é Or'et?]ta?lon' tth|s c.o.mpon;ahnt en-
configuration is often not realizable due to interference. F gurages all parts o be placed on the floor to minimize the c.g.

ther, since the cost function is to be minimized connectiv\i&&/‘e'ght' The cost function that has to be minimized is given as
gllows:

information alone for the set of interference-free configuratio
is insufficient. Only an exact description of the bounding n
surfaces of the configurations that result in interference enablef(w) = Z [w(max(X;) — z0)? + w(min(X;) — z0)?]
the computation of the optimal interference-free configuration. i=1
The requirement in robot path planning of guaranteeing no

interference at all configurations along the path does not apply [w(max(¥;) = o)? + w(min(¥;) — yo)°]

+
Vi

to optimal part placement. Zzl
The main contributions of this paper can be summarized as = 2
ollows +Y [l -w)(@i-2)*], wel0,1] (1)

1

-
Il

1) A technique to speed up computation of the set of con-
figurations of a rigid convex polyhedral body that resulfvhere
in geometric interference with another rigid convex poly- %
hedral body. The technique involves extrapolating the set
of positions that result in interference for one orientation
to obtain the corresponding obstacle for another orienta-
tion. We show how to compute the interval of orientations
within which this extrapolation is valid.

parameter that varies between 0 and 1 and
is set by the user specifying the importance
of space utilization relative to stability; when
w = 0, there is no cost for space utilization
and whenw = 1, there is no cost for increase
in z coordinate of c.g. of the parts constituting

2) A technique to speed up computation of an optimal po- the stack; _
sition (constant orientation) for a rigid concave polyhe- ” number of parts in the stack;
dral body such that there is no geometric interference (Xi: Yi, Z;) set of vertices for par;
with other rigid concave polyhedral bodies. We are able Zi z-coordinate of center of gravity of pait
to compute the optimal interference-free position (mini- (%o, %0, z0) ~ center pointor a corner of the designated floor
mizing a quadratic cost function) by only partially con- space area.
structing the set of configurations that lead to geometric Fig. 2 shows stacks of 121 cubes for different valuesvof
interference. The effect of increasing the cost of space usage relative to cost

3) Application of c-space based techniques to planningfincrease in stack height can be seen from the transition of the
for stacking such that nested stacks are preferred (asstack from a flat pattern to a single column. For intermediate
Fig. 1), protruding flanges can automatically be acconyalues ofw, the stack is a pyramid. While we have shown the

modated in holes, robot positioning error is accountéthole gamut of the cost function variation, most users will opt
for by the planner. for a value ofw = 0.9 or less.

We first briefly describe the stacking planner. We then formu-
late the more specific problem of computing near-optimal inteP: Global Problem: Approach
ference-free configurations for a part being added to a stackThe planner builds the stack part by part (see Fig. 3 for an
We present two techniques to speed up this computation. Thiample stack with fifteen parts). Every time a new part is added
is followed by a discussion of the results from using algorithme an existing stack, parts already in the stack are considered
developed in this paper for interference analysis by the stackistgtionary. In order to generate compact stacks, the planner uses
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Fig. 3. Incrementally building a stack with fifteen parts: (a) 1 part, (b) 2 parts,

(c) 3 parts, (d) 4 parts, (e) 5 parts, (f) 6 parts, (g) 7 parts, (h) 8 parts, (i) 9 parts,
() 10 parts, (k) 11 parts, (I) 12 parts, (m) 13 parts, (n) 14 parts, and (0) 15 parts.

(n)

without considering the bounding box of the existing stack. In

{ﬂw-ﬂ.!li (giw=1 ) : .
Fig. 3, the second stage is required for parts #1, 3, 5, 7, 9, and

Fig. 2. Effect of increasing importance of floor space utilization relative tgrl'
stack stability. Every part configuration has to satisfy the following condi-

tions.

a two-stage approach to add a new part to an existing stack. Inl) There should be no geometric interference.

the first stage, it tries to locate the part such that the bounding2) The part should be supported by other parts and the floor
box of the stack is not enlarged or enlarged by a small amount  such that it is stable.

to accommodate a nested configuration. In Fig. 3, the planner is3) The part should have a horizontal face that can be grasped
successfully able to add parts #2, 4, 6, 8, 10, and 12—-15 without  using suction cups.

expanding the bounding box of the stack. If no configuration is 4) It is possible to add the part to the stack by translating it
found in the first stage, the planner tries to locate the new part along—z direction.
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Fig. 4. Polyhedral configuration parameters.

Clearly, the part configurations have to satisfy a number of con- :>
cerns other than interference avoidance. The focus of this paper
is development of algorithms to generate a list of promising in-
terference-free configurations [satisfying condition 1)] that can
then be evaluated to see if they satisfy stability, grasping, and
stacking plan feasibility concerns [satisfying conditions [2)—4)]. ()
Consider adding a new part to an existing stack. We wish to - . .
. . S Fig. 5. Obtaining the set of permissible positidagrom volumeX. ()2 =
compute configuration of the new part that minimizes a co§f_’ () = 270°.
function that is convex with respect to the position of the new
part. The new part once added to the stack should not interfere
with other parts in the stack and should lie inside the volume ob- IIl. A PPROACH
tained by extruding the allocated floor space with the maximum gptimal interference-free configuration computation of
permissible stack height. polyhedral parts is difficult. Even the 2-D form of (2), i.e.,
As shown in Fig. 4, for every new part that has to be added itimal nesting of blanks on a sheet & {p., Py}, ® = 0)
an existing stack, we have to determine three position param@s peen shown to be NP-hard by [1]. Hence, determination of
ters {p., py, p-} and three orientation parameteis, >, 6.  a globally optimal part configuration is impossible in polyno-
Our stacking planner enumerates promising stable and gragal time. However, computing a closed-form description of
pable orientations of a part, thus choosing orientation parapigpace obstacle ifp., Py, P, 6}-space is more difficult than
eters{¢, ¢ }. Let us assume for the rest of this paper that theggmputing the corresponding obstacle in lower dimensional
two parameters are fixed. That leaves four configuration paramy, .. p.}-space for a discrete orientations of the new part.
eters to be determinedp.,, py, p-, 6}. _ We seek to compute near optimal solutions without exhaus-
The problem can be formulated as follows. Given tively covering the search space. We consider only discrete
1) a new partA with positionp = {p., py, p-} and orien- values ofd. Only the position parameters now remain to be com-
tation® = {¢, ¢, 8}, where¢ ands are constant; puted. The main advantage of dealing with., p,, p. }-space
2) an existing part stack; is thatc-space obstacles and free space regions corresponding
3) auser-defined cost functioff{p, ¢) that is convex in po- to polyhedrons are polyhedral. Hence, the constraints for the
sition parameterép.., p,, p. }. The present planner usesproblem in (2) are linear. Computation ofcaspace obstacle

pYA

Px

the cost function from (1), and in {pz. py, p.}-space is described in Appendix B. If the cost
4) volume obtained by extruding the floor space by the mafunction is convex, it is easy to compute the optimal interfer-
imum permissible stack height; ence-free position using a closed form method. By considering
compute the configuratio* = {p*, 6*} as a solution to the discrete orientations, we have traded optimality for the ability
problem to produce near optimal configurations in reasonable time.
min f(p, 6) A. Techniques to Speed Up Interference-Free Configuration
subject to Computation
A(p, 0) ﬂf =4, A near optimal interference-free configuration can be com-
Alp, 0) C T = p e Qb), puted by first determining the best interference-free position
6 € [0, 2r). @) for each discrete orientation from (2) and then choosing the

best configuration of the lot. Determination of the best interfer-
where(2 is the space of positions such that the polyhedton ence-free position for a discrete orientation requires the compu-
lies inside the volum&. A 2-D example is shown in Fig. 5 for tation of thec-space obstacle for the existing stack with respect
two values of. We can see th&® is a function of? and is given to the new part. The best interference-free pOSition in this ori-
by the following relation: entation is the position that lies in the region obtained by sub-
tracting thec-space obstacle from the region of permissible po-
p € Q) = Ap, §) C 3. (3) sitions©2 and minimizes the cost function from (2).
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For every discrete orientation, we require the computation-

ally expensive step of computing-espace obstacle. In order to Vi - VA
speed up the computation, we address the following questions.
1) Is it possible to reuse-space information computed for AVA 3 ‘ \vp-vp
one discrete orientation for other discrete orientations? “V

VE-VA

2) Isit possible to compute the interference-free position for v e
VAR A VATAAS

a discrete orientation by constructing only a portion of the
corresponding-space obstacle? World Coordinate System Configuration Space
We will show in Sections IV and V that the answer to both these

questions is yes. This results in a significant saving in computag. 6.  Effect of rotation of polyhedroA on c-space obstacl€/(4, B).
tion time.

to become an extreme point. Appendix C shows that we can

IV. EXTRAPOLATION OF A C-SPACE OBSTACLE IN compute critical orientatiofi, by solving a quadratic equation
{Pe, Py, p-}-SPACE FROM ONE ORIENTATION TO ANOTHER  for tan(6,./2) and then computing the inverse tangent.
ORIENTATION We need to perform this step for every paif for every face

This section describes the first of two techniques used by us¥dne con\?e}c]—space obséacle.lTr]lerefore, th'i requweithe com-
speed uf-space obstacle construction. First we characterize tﬂgtat!on ort c-space o staqe rom spratc using the proce-
effect of changing orientation parameteon c-space obstacle dur_e in Appendix B for one orientation in every interval within
geometry and topology of its face-edge-vertex graph. Next W1ich the topology of the obstacle stays the same.
identify orientation intervals within which the topology stays

constant and we can easily extrapolate geometry of the obstacle i ,
from one orientation to another. B. Extrapolation ofC-Space Obstacle Using Constant

Topology Orientation Interval

A. Effect of Change in Orientation afi-Space Obstacle , ) .
Let us consider computing espace obstacle for discrete

Topology in{pz, py, p- }-Space values off starting withé = 0. The obstacle foé = 0 can be
Appendix B shows us how to co_mputecespace obstacle computed using results in Appendix B@(n 1 - n - log(n 4 -
C(A, B) for convex polyhedronB with respect to a convex ,, .y) time. The nearest critical orientation where thgpace ob-
polyhedronA in {p., py, p-}-space. We can see from (12) thakiacle topology changes can be computed by solving (5) for all
thec-space obstqcle is convex. Let us exa_mine the effect on tla'@ntspij using the procedure from Appendix C. This gives us
obstacle of aIIowmg.él to rotate about the axis of world coordi- e range o within which the topology of the obstacle stays the
nate frame. The points;; used to compute the obstacle can bgame and we refer to this range as constant topology orientation
divided into two mutually exclusive sets: black extreme poinfgterval. For all subsequent discrete orientations in this interval,
and white interior points. the c-space obstacle can be computediifn. 4 - n) time by
As Ais rotated, the point#;; are transformed as follows:  j,st determining the new location of the black extreme points in
Fig. 6 using (4). For the first discrete orientation that lies out-
P(0) =V —R. V5!, i=1,2, ..., 04, side the constant topology orientat_ion interval, we compute the
i1 9 n 4) c-space obstacle from scratch as in the casg ef 0. For the
J P B newc-space obstacle, we can once again compute the new con-
stant topology orientation interval and repeat the process.
The variation of obstacle topology for the polygons from
g. 6 is shown in Fig. 7. The orientation parametes varied

whereR, 4 is the rotation matrix and!, i = 1,2, ..., na
are the vertices oft atd = 0. As A is rotated, the connectivity _.
graph topology ofC(A, B) remains the same as long as thFI - .

! Vv ) . . from & to 9C°. The obstacle in Fig. 7(a) is computed from
black points remain extreme points and the white points remain . : . -
interior scratch using the procedure in Appendix B. The nearest critical

' . . . . ._orientation is computed to be 4&nd the constant topology
If one of the interior points becomes an extreme point or vice-

versa (see Fig. 6), the topology of the obstacle changes. As Quientation interval is [0, 45°). Therefore, the-space obsta-
9-9), pology . anges. .cles for 15 and 30 in Fig. 7(b) and (c) can be extrapolated
value ofé changes, a necessary condition for an interior poi

to become an extreme point is that it lies inside one of the fac%m the obstacle in Fig. 7(2). Similarly, we can compute the

of the convexc-space obstacle. The critical orientatiyrwhen obstacle for 43 [Fig. .7(d)] IS co_mputed_from scratch, the new
. L oo . . constant topology orientation interval is computed to be [45
this condition occurs is given by the following equation:

90°), and the obstacles for 8Gand 75 in Fig. 7(e) and (f)
respectively are extrapolated from obstacle in Fig. 7(g). The
[Fi;(6.) — Fp(8.)] en(b.) =0 (5) c-space obstacle [Fig. 7(h)] for 90s then computed from
scratch. This example is not trivial as sheet metal parts are
whereFy is a vertex on one of the faces 6f A, B) andn is decomposed into convex components before computing the
the normal of the same face. Checking for this condition is@aspace obstacles. Hence, interactions between triangular and
conservative method of evaluating if an interior point is abouéctangular polygons that have been extruded by the sheet
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Fig. 8. A sheet metal part with 79 convex components.

of interference-free position for a concave solid with respect to
concave obstacles for a discrete orientation.

A. Interference-Free Configuration Computation for One
Discrete Orientation

Consider the part design shown in Fig. 8. This sheet metal
part has 79 convex components. Let us assume that the goal is
to compute an optimal interference-free position for such a part
with respect to an existing stack. For simplicity, let us assume
that the existing stack has only one part. Computing:tepace
obstacle for the part in Fig. 8 requires computing the obstacle
first for 6241 (79) convex component pairs. Therefore, compu-
tation of the complete-space obstacle for a concave polyhedral
pair for even a single orientation can be time-consuming.

It is, however, possible to compute a near-optimal interfer-
ence- free position (see Fig. 9) without having to compute the
full c-space obstacle for every discrete orientation, i.e., for each
discrete orientation, we compute thepace obstacles for only a
few convex component pairs. It should be noted that the solution
we obtain by looking at only a portion of the obstacle is as good
as the one that would be obtained by looking at the complete
obstacle for that discrete orientation. We are not compromising
on the solution quality by ignoring portions of tkespace ob-
stacle.

Fig. 9(a) shows the new part, Fig. 9(b) shows the convex de-
composition of the part, and Fig. 9(c) shows the set of permis-
sible positions for the new part. Here are the steps for computing

a near optimal interference-free position for this orientation.

1) Choose a candidate optimal positipa for the new part
[Fig. 9(d)] that minimizes the cost function from (2).

2) Construct the list of interfering convex paitsshown in
Fig. 9(e).

3) Construct thec-space obstacle for these interfering
convex pairs [Fig. 9(f)].

4) Subtract thig-space obstacle from the set of permissible
positions.
In this section we discuss the second technique used by5) Choose a new candidate positiefy that minimizes cost

the authors to speed upspace obstacle construction. This function and go to step 2).

technique results in significant savings in computation time We repeat this process until no additional interference is de-

when applied to concave solids that consist of a large numbette€ted in step 1). In the example shown in Fig. 9, this occurs

convex components. This technique is applied to computatiafter just one iteration and the final position is shown in Fig. 9(i).

Fig. 7. Variation ofC-space obstacle topology &5 changes. (ap = 0°.
(b) ©® = 15°. (c) © = 30°. (d)© = 45°. (e)©® = 60°. (f) © = 75°.(9)
© = 90°.

metal thickness occur often in practice and the discretization
step forf is 1°-5°.

V. INTERFERENCEFREE CONFIGURATION COMPUTATION
USING PARTIAL C-SPACE OBSTACLES
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Fig.10. Complet€'-space obstacl€ (A, I') for existing stacl’ with respect
to the new part\.

new partA and the existing stadk from (2) are concave and are
decomposed inter4 andmr convex components, respectively

ma mr

® © A=Jn, T=UTy (6)
=1

whereA,; andl’; are convex components of the new parand
existing stacK", respectively.

The c-space obstacl€’(A, T') is the union of the obstacles
for all the convex component paif4;, I';). Hence, we have
the relation

(h) 0] ca D) =lJom, Ty, i=1,2 ..., ma,

Fig. 9. Computation of an interference-free position using pa€iaipace j=1,2 ..., mr. (7)
obstacle. (a) Part. (b) Convex decomposition. (c) Space of candidate positions. °

(d) Initial position. (e) Interference convex pairs. (f) C-space obstacle for S .
iinterfering convex pairs. (g) Free space after substracting C-space obstacle) Interference Pair Lists:Interference detection between a

from (f). (h) Interference pairs in new candidate position. (i) No interferenggolyhedral pair can be performed much faster thapace ob-
detected in new candidate position. stacle computation for the same pair. We use an interference
detection tool called RAPID [4]. RAPID models a polyhedron
using a hierarchical data structure called an oriented bounding
During each iteration, the set of permissible positions shrinksjgyx At the lowest level, the model surface is represented as
step 2) as a-space obstacle is subtracted from it. Thereforg, et of triangles. RAPID considers polyhedral pairs that are
there are only two possible outcomes to the iterative process }L%I touching each other as interfering. We have supplemented
scribed above. One is that an interference-free position is fouad p|p with some reasoning about triangle pairs to differentiate
and the other outcome is that the set of permissible positiogsyyeen triangle pairs that are touching and those that are pen-
shrinks to a null set asaspace obstacle gets subtracted from grating. Thus, we can test all the component pairs I';) for

in step 2) of each iteration. interference and compile a ligt of interference pairsas fol-
1) Decomposition of a Concave Part Into Convex Compgys:

nents: We decompose a sheet metal part into convex compo-

nents by looking at a zero-thickness model of the part. Every—= {(Ai7 L)|A; ﬂ I, # &,

convex face of the part is extruded by the sheet metal thickness

to form a convex component. Every concave face is tessellated =12 ...,mp 5=1,2,..., mr} . (8

into triangular faces and each triangular face is then extruded by

the sheet metal thickness to form a convex component. The parThe c-space obstacle€’(L) corresponding to this list of

shown in Fig. 8 is decomposed into 79 convex components. limterference pairs is the union of the obstacles for the individual

also possible to merge some triangles into larger convex piecesivex pairs. This obstacle [see Fig. 9(fpace obstacle

[3]. C(A,T') (see Fig. 10) for the existing stack corresponding
2) C-Space Obstacle for a Concave Part With Respect to the new part. Consider the free space region obtained by

a Concave ObstacleAppendix B discussed-space obstacle subtracting this obstacle from the set of permissible positions

computation for convex polyhedral pairs. Let us assume that tfoe the new part. For any position of the new part in this free
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space region, there is no interference between convex pairs ofiVe use a two-stage approach. In the first stage, for every dis-

list L. crete orientation.
1) The new part is positioned at positipg that minimizes
B. Quality of Interference-Free Position Computed Using the cost functionf(p, 6).
Partial C-Space Obstacles 2) We compute interference-free position accounting for in-

The cost of the interference-free configuration computed  terference pairs encountered only at positien
using this procedure is as low as the cost of an interference-free3) The interference-free position and orientation are entered
configuration computed by a method that constructs the intoapriority queue along with the value of the cost func-
complete obstacle for every discrete orientatton For the tion at this configuration.
polyhedral pair {, I'), there aremmr possible interference The second stage of the algorithm consists of the following
pairs [see (6)]. Consider a single discrete orientadipnThe Steps.
c-space obstacl€'(A, T, 6;) is the set of positions that result 1) Extractthe cheapest configuration from the priority queue
in interference between one or more of thesgmr possible 2) If this configuration for new parf\ is interference-free
interference pairs. The-space obstacle”(L;) is the set with respect to existing stadk choose this as the optimal
of positions that result in interference only between one or  configuration and stop.
more interference pairs that are present in figt Therefore, 3) Else, for current orientation, move to a new position ac-

C(Ly) is a subset ofC(A, T, ;). From this, we can infer counting for additional interference pairs encountered in
that the set of positiong'(L;), where no interference exists current position. Add new configuration to priority queue
between the interference pairs @éf, is a superset of free with value of cost function at this configuration.
region F(A, T, 6;), obtained by subtracting-space obstacle 4) If priority queue is not empty, go to step 1).
C(A, I, 6;) from the set of permissible positionQ(6;). 5) Else, no interference-free configuration exists. Stop the
Hence we have the relation computation.
Thus, orientations are considered for the expensive step
F(Ly) =Q(6r) — C(Li) of interference-free position computation only if they ap-
F(A, T, 6;) =Q(6:) — C(A, T, 6;) pear promising. If a certain orientation has a high cost after

processing only a few interference pairs, the corresponding
configuration is pushed to the bottom of the priority queue and

The cost of the optimal configuration in regidi(Ly,) is a will not be considered again before ruling out other cheaper
k orientations.

lower bound of the cost of the optimal configuration in the re- Th mplexity of this procedure (N
gion F(A, T, 6;,). This shows that for every discrete orienta- .. COMPEXIty of his procedure (No - np - (na -

tion 6, the cost of the interference-free configuration Obtai”%E?;ﬁi(gﬁngﬁg)é;vg%e ]\;’n:js theapeumz e;uor;g:asrccr;t\?e(r)trif:s-
by considering only interference pairs 6f. is as low as the A T

cost of the interference-free configuration computed by coﬁf A and I, respectively. The cost of computing a convex

structing the complete-space obstacl€'(A, T, 6;) and free ull using all vertices oft andl is O(ny - nr log(ny - nr)). .
region F(A, T, 6). The parameten;, is the total number of interference pairs

considered and is the sum of the number of interference pairs
in all L. In the worst case, the value af;, is still the total
number of interference pairamr. However, we have seen
through tests that for complex parts; < 0.01 mpmr.

One way to compute the best interference-free configuration
for a new part is to compute the interference-free position fory/| | NTEREERENCEANALYSIS BY THE STACKING PLANNER
every discrete orientatiah, = 0, A8, 2A80, ..., 2r—Af using ) ) ) ]
the iterative procedure from Section V-A and select the best of!N this section, we describe how our stacking planner uses the
the computed positions. In this section, we show how to furth@lgorithms from the previous section for interference analysis.
speed up the process. Interference av0|dan_ce is one of many constralnt_s part config-

The best configuration is the one minimizing the cost functidff2lions have to satisfy while computing a stacking plan (see
#(p, 6) from (2). Let us assume we have computed an interfep€ction 1l). We discuss some modeling and representation is-
ence-free positiop* for one candidate orientatict such that SU€s that have to be resolved in order toasspace based anal-
there is no interference between the new part and the existffiS Py @ stacking planner.
stack. The value of the cost function for this configuration is .
F(p*, 6%). For certain orientations, even accounting for a fed)- Interference Analysis
interference pairs can movk so far, and hence increase the One of the key components of the planner is an Interference
value of the cost function beyonfi{p*, 6*), that the current Analysis module. For a fixed orientation, it supplies a list of
orientation is not going to yield the optimal interference-fremterference-free positions for a new part to be added to an ex-
configuration. We can therefore discard such orientations afisting stack. This list of positions is sorted in increasing order
analyzing only a few interference pairs and completing iteraf cost. So far, we have assumed that the orientation parame-
tions till no interference is detected between the new part atats ¢ and+ are constant. While adding a part to a stack, the
the existing stack. planner looks at a discrete orientation Sefs= {¢x, ¥« Ok }.

C. Interference-Free Configuration Computation Over All
Discrete Orientations



AYYADEVARA et al. INTERFERENCE-FREE POLYHEDRAL CONFIGURATIONS FOR STACKING 155

(0, 30) (-25.1,25.1) (25.1,25.1)
(25,30) C-space Obstacle
F with Error

F 2

(-15,15) ! @5,15) (40,15) ™ Robot Positioning
’ ©, 15) C-space Obstacle — Error=0.1
Py F3 with No Error
(15, -6) -6 P (56 @0,-6) (-25.1,-25.1) (25.1,-25.1)
F,
W F; y Fig. 12. C-space obstacles with and without accounting for robot positioning
error.
©,-21) (25,-21)

_ _ ' space, that is, modeling the obstacle as a intersection of half
Fig. 11. Representation of concave free space using convex components.spaces described by linear inequalities. Thisis possible because
obstacles in our interference analysis module are computed

The planner using stability and grasping related constraints @&ly convex interference pairs. This ensures that the obstacle in
cides these orientation sets. We wish to allow external modulls:, py. p- }-space is also convex. The second representation
to rule out orientations for reasons such as ability of the rob@ an obstacle is a face-based representation that describes the
to grasp a part. Such concerns may not be addressed by the Bggndary faces of the obstacle. The boundary faces and their
function. Therefore, as recommended by Section V, we us&€jtices are used for extrapolation as discussed in Section IV-B.
two-stage approach to compute interference-free positions forThe linear inequality based representation is useful for in-
candidate orientations individually. Extrapolation (explained igorporating robot positioning errors. Let us assume that all the
Section V) from one orientation to another is still performetnequalities have> sign. Increasing the right hand side of the
for 6-intervals. inequality by the required amount enforces a separation dis-

Consider a new part that has to be added to a stack. Tta&ace between parts. Consider the representation of the two-di-
part orientation is constant. The interference analysis modimgnsionat-space obstacle from Fig. 12 without accounting for
positions the new part on the floor at the center of the flogPbot positioning error. This is shown as the following equation:
space. RAPID collision detection library [4] is used to identify
the convex polyhedral pairs (one convex polyhedron from the Pz 2 =25, —pg 2 —25
new part and other convex polyhedron from a stack part) that Dy > —25, —py > —25. (20)
interfere. A list of interference pairs is constructed and we use
a two-stage approach, which computes an interference-free poAccounting for robot positioning error of, say, 0.1 changes
sition using this list. the representation to the following equation:

1) Modeling of Free SpaceOne issue is how best to
represent the free space information. This will help us decide
how to compute a position minimizing the user defined cost py 2—-251, —p, 2 -25.1 (11)
function f(p, 6,) over a free region in{p,, py, p-}-space. ) o
For a fixed orientation, the cost function used currently bY@ Solid model had represented the obstacle, growing it by the
the planner is a convex quadratic function of,.. p,, p.}. Separation distance would have been messier. The faces of the
There are closed-form methods available to solve for optim@cdel have to be moved out and additional faces would have
solutions in a convex space. With the orientation fixed, boif P& generated to fill the gaps between the faces in their new
c-space obstacles and free regions are polyhedral. Hence, RGS!tION- _
convenient to represent the free space as a set of disjoint conve®) Subtraction of aC-Space Obstacle From a Free-Space
polyhedrons. Fig. 11 shows a concave free space split up it8MPonent:Since we always represent the free space as a set
six disjoint components. The position in the concave free spaedisioint convex polyhedrons, subtraction of an obstacle in-
that minimizes the quadratic cost function can be comput¥glves the following steps.
as follows. Use a closed-form method to compute the optimal 1) Eliminate the free-space components that are completely
position for each of the six convex components and pick the  inside the obstacle.
best of the six positions as the optimal position. 2) If the free space component and the obstacle intersect,

Each convex component of free space is represented as a set subtract obstacle from the free space component. If the
of linear inequalities that describe the bounding faces of the = modified free space component is concave, decompose it
component. These linear inequalities act as constraints while into smaller convex components.
solving for an optimal position in this component. Once an intefrhese tasks can be accomplished easily by manipulating the
ference-free position is computed for every convex componesign of the inequalities describing the obstacle. There is no need
we pick the one with the least cost among them as the interféor the more expensive and nonrobust option of constructing
ence-free position for the free region as a whole. solid models of the free space components and obstacles and

2) Modeling of C-Space ObstaclesC-space obstacles in performing Boolean operations on them.
our planner have two representations. One representation it Fig. 13, we show the subtraction of an obstacle from the
the same as the one used for convex components of the fiee space components shown in Fig. 11. Compoignies

pe > 251, —p,>-251

7
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C-space Obstacle

F21
Fil
pyL Fy Py L F @ (b) (c)
Px Px 32 Fig. 14. Test parts. (a) Channel part. (b) Triangle part. (c) Complex part.
F, F Fy F, F Fg . . . . . .
s 5 using interference-free configuration computation algorithms

in our stacking planner along with other analysis modules that
evaluate stability, stacking plan feasibility, ability to grasp the
part in its final configuration, etc.

We use three test parts. The first part, cali@tannel Part,
completely inside the obstacle and hence is eliminated. Comg@own in Fig. 14(a), is the simplest of the parts considered and
nentf; overlaps with the obstacle, but need not be decomposggk three flanges. Flipping alternate parts in a stack upside down
further as the subtracted pOI’tiOﬂ is still convex. The smallegn produce nested stacks. The second part (caliechgle
component is labeled?;. Componentl’s becomes concave part) has six flanges [see Fig. 14(b)] and can be repeated in the
after subtraction and is decomposed into convex componeségne orientation to generate stable yet compact nested stacks.
P31 and F3. Componentd’y—Fg are not affected by the sub-The last part, calle€omplex Part[see Fig. 14(c)] is a com-
traction operation. plex part with 79 convex components and hence takes more

4) Computation of Multiple Interference-Free Positions fofime to analyze. We use this part to show that the benefits of the
a Single Orientation: Computing an optimal interference-freespeed-up techniques, especially the one described in Section V,

position requires determining the optimal position in evenycrease significantly as the part becomes more complex.
convex component of the free space and then choosing the

cheapest among them as the final answer. Often, the new partinterference-Free Configuration Computation

in th_is optimal interference-free position may be unsta_b_le In this section we show the effect efspace obstacle compu-
or might render other stack parts unstable. Since a positigion speed-up techniques from Sections IV and V on the com-
In every convex componean(_ through Fs in Fig. _11) has putation of a near-optimal interference-free configuration for a
already t?ee” computed, the m'ger.ference. analysis moduleQf; part when added to an existing stack. Three test parts are
our stacking planner sorts them in increasing order of cost a0} sidered. The examples in this section involve add a new part
then returns the list. Other modules in the planner search thisyy existing column stack. The optimal configuration mini-
list for a position that satisfies stability, grasping and othefizes the Euclidean distance from a user-specified desired po-
user-spem_ﬂed concerns that render the stacking plan feasﬂgliﬁonpd for the part to be added to the stack. Posigarplaces
For a detalle_d description, P'ease see [2]. .the new part c.g. at centroid of the faces or edge/face combina-

Computation of one solution for every convex component ify,, that supports the whole stack. For example, the stack base
creases the chance of flndm_g gstable position. Every face %"’\:ig. 15(b) is the large base face of Part 1. For all the test
c-space obstacle reflects a distinct contact state between thejlks  the stack orientation is chosen randomly and the initial
terfering convex pairs [5], [6]. Initially, the free space consists Qfe,y part orientation is chosen as The only constraints that
only one convex_component. The faces of this c_:omponent_repé(?é enforced are that the part position should lie inside a user
sentthe gonstramts of the floor space and maximum perm'ss'B%vided set of positions] from (2)] and there should be no
stack height. When an obstacle is subtracted from a free-Spggference with other parts in the stack. These results might be
component, it is decomposed into smaller convex pieces Usi\nterest to people interested in generatingpace obstacles
the obstacle faces. Hence every face of the free-spa_ce C?HP'any application in four-dimensiondb,, p,, p.., 8}-space.
ponent represents a contact state or a space constraint. F@j,a re4 where suehspace obstacles are useful is in path plan-
qua}drat|c cost fu_nct|on, such as the one used by our planner, ﬁri}g-g, in a workspace with polyhedral obstacles, for a 3-D poly-
optimal position in a free-space component always lies on onef a1 mobile robot with three degrees of freeddm;, p,, 0}
its faces. Since different free-space components have faces HBRs -space obstacle ifip., p,, 0)-space can be obtained by

) Py

resenting different contact states. Therefore, a list of positiofs; computing thec-space obstacle ifip,., p,., p.. 0}-space
drawn from all the convex components, are likely to resultin &, then intersecting it with the. = 0 ple:;l’e. y> Pz,

different contact state for the new part when added to astacki) Implementation:We have implemented the two-stage
We hope that at least one of the contact states renders the Bf¥edure from Section V-C using C++ on a PC with a

part stable. 266-MHz Pentium Pro processor. The discretization si#p
(see Section V-C) is chosen & RAPID library [4] is used for
VIl. RESULTS AND DISCUSSION interference detectiomhull library [7] is used for convex hull

In this section we first demonstrate the effect of the twt(:)omputatmn, and ACIS geometric kerhé used to model the

techniques described in Sections IV and V on computirpgarts and the-space obstacles. Triangulating all the concave

interference-free configurations. Next we show the result of!Refer to http://www.spatial.com for Acis Geometric Modeling Library.

Fig. 13. Subtraction of &'-space obstacle from free space.
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©) ®

Fig. 16. Addition of a new part to an existing three-part stack for triangle part.
(a) New part. (b) Three-part stack. (c) Initial configuration. (d) Intermediate
configuration #1. (e) Intermediate configuration #2. (f) Final configuration.

® (9
Fig. 15. Addition of a new part to an existing three-part stack for fnijtial orientation for the new part is°0 This orientation is not

(@ Intermediate configiration #1. (&) mermediate. configuration #2. (4alid @5 the new part interferes with parts already in the stack.

Intermediate configuration #3. (g) Final configuration. Hence, the planner tries out different discrete orientations and
for each discrete orientation, it computes the distance the new
part has to move to avoid interference between the interference

faces of a zero sheet thickness model of the part and extrudpairs (see Section V-A3) it encountered at positijgf. For

the resulting polygons by the sheet metal thickness genertite orientation shown in Fig. 15(d), the new part is almost

convex components of the sheet metal part. overlapping with Part 1. In this configurati@nthe new part

2) Set of Permissible Positiofs For channel and triangle still interferes with parts 1 and 2, but the interference pairs are
parts, the set of permissible positiofisis a subset of 3-D different. The algorithm moves the part up to avoid interference
{p=, py, p-}-space and for Part #3, the set of allowable posiirst with parts 1 and 2, and then finally with part 3. The final
tions{ is a subset of 2-Qp.., p, }-space. A 3-D position sé  part configuration is such that the parts are nested.
is useful for parts that have a large number of stable orientationsThe algorithm works similarly for Triangle Part as shown in
(Parts #1 and #2) and the 2-D position $kets preferred for Fig. 16 to produce a nested stack shown in Fig. 16(f). This is
parts like Complex Part that have few stable orientations. tme of the main advantages of usirgpace representation. It
the 2-D case, the position paramegerfor a new part can be helps us obtain nested stacks without explicitly looking for part
chosen by identifying a set of edges or faces of parts alrea@atures conducive to nesting. For the examples in this section,
in the stack that support the new part rendering it stable. Rbe initial stack orientation is chosen at random. Hence, we need
the 3-D case, position parameter for the new pgrts chosen the discretization stef\é to be small enough such that at least
such that the part is placed at the bottom of the stack. Pleas® orientation that facilitates nesting is not considered. The ex-
note that the user does not specify orientation and the plantrapolation algorithm described in Section IV helps us analyze
(in Section VII-A alone) chooses a discrete orientation thatspace information for alarge number of candidate orientations
enables it to position (with no interference) the new part agithout having to construct thespace obstacles for every ori-
close as possible to the desired position. entation from scratch.

3) Interference-Free  Configurations for the Test While the benefits of the extrapolation technique from Sec-
Parts: Addition of a new part to an existing stack is shown fotion IV apply uniformly to all parts irrespective of their com-
the channel partin Fig. 15. The new part to be added is showrpiexity, the benefits of the partiatspace obstacle based tech-
Fig. 15(a) and the three-part stack it has to be added to is shavigue from Section V are more pronounced for stacks with com-

in Fig. 15(b). The desired positigsy for the new part [shown _ _ i _
20nly a few candidate configurations considered by the two-stage procedure

in Fig. 15(C)_] is such that it_"es at the bottom of the stackom section V-C are shown for the sake of brevity/e8 = 1°. This is true
and its c.g. lies at the centroid of the base face of Part 1. Tfaethe stacks shown for triangle and complex parts in Section VII-A.
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4) Computation TimesTable B shows the time spent by
RAPID for interference detection, time spent fespace ob-
stacle construction from scratch, and time spentfspace ex-
trapolation. The time taken per function call is also presented for
each of these tasks. We can see from Table | that the time taken
per function call for extrapolation of aspace obstacle is an
order of magnitude less than the time taken per function call to
compute an obstacle from scratch. We can also see that the total
time spent for extrapolation is larger than the total time spentin
obstacle construction. This indicates that the constant topology
orientation intervals (see Section 1V-B) are large enough for the
extrapolation function to be valid for a large number of candi-
date orientations. This shows us that the extrapolation technique
described in Section IV is faster than construction from scratch
and it is valid for many candidate orientations.

As explained in Section V-A3, we use interference detection
to avoid unnecessary computationse$pace obstacles. This is
Fi_gi-] 17. Computing an_interference-fre? C_C_Jnlfiguréfl_tion eran%W Icompleﬁ pidstified by the fact that time taken per call for interference de-
A respec 1o one Satonary art, (o) el confiowaton. () etermediiE cion is about an order of magnitude fess than the time i takes

to construct the-space obstacle from scratch. One interesting

observation from Table | is that the time taken per function call
plex parts. This even applies to stacks with a small number fef interference detectior;space obstacle construction, or ex-
parts. We show this by presenting the results for a two-parhpolation is the same for all the three test parts, in spite of
“stack” for Complex Part from Fig. 14(c). Stacks with largethe varying degree of complexity. This is the result of convex
number of parts for Complex Part are dealt with in the nexecomposition of the parts. Hence, the three routines work on
section. The set of permissible positicidor this example is triangles or simple convex shapes most of the time. As part com-
two-dimensional and is a convex region in fag= 0 plane.  plexity increases, the number of times these routines are called

Fig. 17 shows the computation of a near-optimal interfelncreases. The total time taken for the complex part is only twice
ence-free configuration for Complex Part. The initial, final angs large as the time taken for the other two parts because of
a couple of intermediate configurations are shown in Fig. 17(a\vo reasons. The first reason is that there is only one stationary
(d), (b), and (c), respectively. This part poses two difficulties: part in the stack and the set of permissible positions is 2-D. The

1) It has a large number of convex components. second reason is that the algorithm was lucky enough to find an

2) Choosing a near-optimal configuration sometimes r@tientation that enabled it to position the new part close to the
quires the accommodation of protruding flanges in holegesired position by accommodating one of the tall flanges in

Partial construction ofc-space obstacles for even thig hole [see Fig. 17(d)]. This prevented the algorithm from con-
two-part case significantly speeds up interference-free Confi@jdering candidate orientations where such accommodation was
ration computation. The reason is that only a few interferenf@t possible and hence the new part had to be moved far from
pairs are considered for the expensive step-space obstacle the desired position.
computation. Searching in-space automatically enables us Table Il shows the effect of partiatspace obstacle com-
to accommodate flanges in holes without explicitly lookingutation on the performance of the two-stage approach from
for such features. However, the final configuration in Fig. 1¥€ection V-C. In column 3, the table shows the number of in-
might not be amenable to automated stacking as the flangd€eigference pairs (see Section V-A3) that have to be analyzed
very close to the edge of the hole. Robot positioning error c& compute the completespace obstacle for the new part for
cause parts to get tangled. One way of avoiding tangle is &@gery candidate orientation considered. In column 4, the table
prescribe an upper bound on robot positioning error and tﬁaOWS the number of interference pairs actually considered by
final part configuration chosen should be at least that far frofie planner for-space obstacle construction or extrapolation.
the c-space obstacle. This has already been implemented in fifethe part complexity increases, the percentage of convex com-
planner (see Section VI-A-2 for details). ponents considered drops from 66% through 26% all the way to

Fig. 8 shows the convex decomposition of the part into #9ss than 0.1%. We can see that there are significant advantages
convex components. One problem with the present trianguf@-using partial computation efspace obstacles for polyhedral
tion scheme is evident from part configurations in Fig. 17(®heet metal parts.
and (d). In the configuration in Fig. 17(c), there is a small tri-
angular component of the moving part that is interfering with B
component of the stationary part. An additional step is requiredin this section we show the stacking plans generated by our
to compute the small translation to the interference- free configlanner for the three test parts from Fig. 14. The number of

uration in Fig. 17(d). Such steps can be avoided by combinin
9 ( ) P y g‘The total computation time includes computation time for procedures other

narrow and small triangles with neighboring triangles to Creaﬁ%n interference detection angspace obstacle computation. Hence, the three
Iarger convex components. computation times do not add up to give total computation time.

Interference Analysis by Stacking Planner
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TABLE |
COMPUTATION TIMES FOR INTERFERENCEDETECTION AND C'-SPACE OBSTACLE CONSTRUCTION AND EXTRAPOLATION FOR
TWO-STAGE APPROACH INSECTION V-C

Time for Interference  Time for Obstacle  Time for Obstacle  Total Computation
No. of Convex

Test Part Components Detection Construction Extrapolation Time
s) (s/Call) (s) (s/Call) s) (s/Call) (s)
Channel Part 3 30.4 0.0014 5.1 0.0105 8.1 0.0013 188.4
Triangle Part 6 58.9 0.0015 22.6 0.0155 14.4 0.0016 298.2
Complex Part 79 151.2 6.3e-5 2.8 0.0111 8.7 0.0016 271.6
TABLE I

NUMBER OF INTERFERENCEPAIRS EVALUATED TO COMPUTE
INTERFERENCEFREE CONFIGURATION FOR TWO-STAGE APPROACHFROM

SECTION V-C
Test Part No. of Convex Total No. of _ No. gf Interference
Components Interference Pairs Pairs Evaluated
Channel Part 3 9720 6960
Triangle Part 6 38880 9951
Complex Part 79 226760 6751

parts,n from (1) is 15. For each test part, we have shown tt
stacking plan for three values of the parametefrom (1).
Whenw = 0.1, part c.g. height is penalized much more tha =%
floor space utilization and the reverse is true o= 0.9. For "8
w = 0.5, the two cost components are comparable. The plant
chooses candidate orientations that can be grasped using

tion cups and are promising candidates from stability point
view. For each candidate orientation, the planner uses procec (B w= 05 (o) w =08
from Section V-A to compute a list of interference-free posi-.
tions sorted in increasing order of the cost computed using (559' 18.
These candidate positions are then evaluated for stability and

stacking plan feasibility. The parts are separated in the plane! "€ Stacking plans for three valueswofor Triangle Part are

by at least 5 mm to account for robot positioning error. THOWN in Fig. 19. The planner shows a strong preference for
only difference in implementation between this section and S&€Sting. For this part, nesting is preferred for low valuesyof
tion VII-A is that the free space is decomposed into convex polf€cause of the small increase in height of part c.g. when it is
hedral components, each of which is represented by a segfied to the stack. For large values.ohesting is preferred be-
linear inequalities. The-space obstacles are also represent&@use of the savings in floor space. The only effect of increasing
using linear inequalities. This eases the task of accounting f¢r'S the reduction from two nested stacks to one nested stack.
robot positioning errors. Further, this increases speed and 1§US 0ccurs because the planner is encouraged by the floor space
bustness of subtraction of:sspace obstacle from the set of perUtilization component of the cost function from (1) to move all
missible positions. parts as close to the floor space ceritey, yo, z0) as possible.

The stacking plans for the three values of parameter w af8€ orientation obtained by flipping the part upside down from
shown in Fig. 18. Fors = 0.1, the preferred orientation is the orientation shown in Fig. 19 results in alpwecoordlnate .
the one with the largest face acting as the base. Nesting ocd@fsthe ¢.g. with the same floor space utilization. However, this
once floor space used becomes large enough for space utilizBside down orientation is rejected because it is unstable when
tion cost to become comparable with the cost of increasing pBfeced on the floor. Often for sheet metal parts, the orientation
c.g. Nesting is also preferred by the planner as it strives to kgt minimizes the c.g. height may not be stable when placed on
the stack compact using the two stage approach describedhi@ floor or may not be supported contacts with other parts to
Section V-B. Asw increases, the preferred orientation changégnder it stable. This justifies the presence of a stability check
to reduce space utilization. Most of the parts rest on the smalféf all candidate configurations although the cost function has a
flange. All the parts are in this sideward orientationdot= 0.9. component that is a measure of stability.

Nesting does not occur in this orientation for= 0.9 as nested  Fig. 20 shows the stacking plans generated for Complex Part.
parts cannot be added to the stack from the top using pure trahie tall flanges make this part a hard one to stacka#er 0.1,
lation. All the part orientations chosen present a horizontal faggost parts are placed on the floor with the largest face acting
for grasping using suction cups. While the interference anals a base face. Only a few parts are placed on top of the bottom
ysis module supplies a list of promising configurations, stabilitigyer of parts. This is due to the difficulty in accommodating
grasping, and plan feasibility concerns dominate the choicetbg tall flanges while observing the separation distance required
the final part configurations. Therefore, it is useful to have ale account for robot positioning error. The planner is able to do
gorithms that can generate multiple interference-free configuthis for only one part. For higher valuesf this orientation is
tions. not preferred as floor space is expensive and it is not possible

Stacking plans for channel part.
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(b) (©

Fig. 20. Stacking plans for the complex part. @)= 0.1. (b) w = 0.5. (c)
w = 0.9.

a whole might produce stacking plans that are closer to what
a human would choose.

VIIl. PREVIOUS WORK

Configuration spacec{space) based approaches have been
popular with researchers working in robot path planning, as-

© sembly planning, and mechanism designc-pace is useful
Fig. 19. Stacking plans for triangle part. (@ = 0.1. (0) w = 0.5. (c) for abstracting away the geometry of the object of interest and
w = 0.9. focus on the property of interest, e.g., geometric interference

and kinematic behavior, but it is expensive to compute. In this

to stack parts in a column fashion because of the tall flang&§ction, we discuss the applicationce$pace based techniques
One drawback of the current cost function is reflected by t§1d what researchers have done to skirt around the problem of
stacking plans fot = 0.5 and 0.9. The planner builds the stacRXcessive computation time required fespace obstacles.

as a set of columns. A stack with staggered parts is more stabld he generation of a stacking plan involves determining inter-
than a set of columns. ference-free configurations for all parts in a stack. We use an

incremental approach to stacking. When a new part is added to
an existing stack, interference-free configuration determination
is performed in the-space of the new part. Parts already in the
Our convex decomposition scheme triangulates concastack are considered stationary obstacles. The desired configu-
faces and therefore produces an unnecessary large numbeatién for the new part is one that minimizes a user specified
convex components. A more efficient convex decompositiaost function. This configuration may not be realizable because
scheme would help further speed up interference-free config-interference with parts in the stack. Hence, it is required to
uration computation. Currently we do not use part symmetopmpute an interference-free configuration that is as close as
to prune out candidate orientations. This again would hefmssible to the desired configuration. This is an instance of the
us compute interference-free configurations faster withofihdspaceproblem defined by [5].
sacrificing solution quality. Our cost function computes floor Reference [5] addressdimdspaceand findpath problems.
space utilization for the parts individually and just sums theffindspace problem is the interference-free configuration
up. A cost function that looks at the properties of the stack dstermination for an object in a obstacle filled environment.

C. Limitations
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Findpath problem involves determining a interference-fréehe approximation is conservative and hence some feasible
path from a start to a goal configuration. Path planning ipaths may not be detected. One advantage is that the free space
{p=, py, 6}-space is performed by computing slices that aie not divided into arbitrary subdivisions such as introduced by
unions ofc-space obstacles ifp.,, p, } for small orientations. Donald. Instead the divisions represent the coherence of the
The slices are a conservative approximation of the #esglace free space. A feasible path is determined by looking at only
obstacle and include all configurations leading to interferenegportion of thec-space. We are also able to compute good

in a small orientation range. interference-free configurations by looking at a small portion
of the c-space obstacle and are able to construct exapiace
A. Configuration Space and Motion Planning obstacles ifp.., py, p-, 6}-space.

C-space based planning has been used extensively for moReferences [16]-[18] use probabilistic methods to perform
tion planning. Motion planning might involve computing an inPath planning. Kavraket al. spend a lot of time building up in-
terference-free path for a robot or for a part to be added to Eimation about the configuration space of a robot. Then, mul-
existing sub-assembly. If no such path exists, the planner shofiRie queries for path from a given start to a given goal can
declare failure. The dimensionality ofspace is the number of be determined very fast. Hat al. research a assembly/disas-
degrees of freedom of the robot. For motion planning, the st&gmbly problem where only a few queries may be made after
and goal configurations are known beforehand. The challeng&iglding a portion of the-space obstacle information. This ap-
computing a path that lies completely in free space for the rob@oach is successful in finding paths through narrow channels
or the part to be assembled. Complexity of computing a feasii@§ motion planning and assembly planning problems. How-
path, irrespective of its optimality, has been shown to be exper, no information is available about the geometric structure
nential in the number of degrees of freedom by [8]. Hence, ti§éthe c-space obstacles. Hence, computing near-optimal inter-
focus in motion planning is on determination of the connectivitigrence-free configurations is not possible.
of the free space, not the more difficult problem of determina- ) ] ] ) )
tion of topological and geometric details. B. Configuration Space and Mechanism Design and Analysis

Computation of the stacking configuration involves deter- Configuration space is used in mechanism design for mod-
mination of the goal configurations for all stacked parts. Faling, simulation, tolerance analysis and proposing alternative
stacking, we are interested in near-optimal configurations thdgsigns. References [19] and [20] survey some of the important
minimize distance from the desired configuration. Hence, weork done in this area.
need topological and geometric information along with con- Mechanism modeling and classification require the com-
nectivity information. Once the stacking plan is generated, giete characterization of one component of free space and
sembly planning algorithms [9], [10] can be used to determirigs boundary. The component studied is the one containing
an interference-free path for the stack parts from a start confige initial mechanism configuration. Mechanism simulation
uration to their final configuration. Alternately, robot path planrequires rapid incremental generation@$pace information.
ning algorithms can determine an interference-free path fodaskowicz and Sacks present an algorithm for kinematic
robot as it builds the part stack. modeling of mechanisms [21]. Stacking requires the complete

References [11]-[13] study path planning for robots in twoharacterization of components of free space containing
and higher dimensions. The first paper performs path planniognfigurations positioning a part on the floor space or above
in {p., py, 8}-space. The emphasis is on studying what haji- We generate incrementalspace information to guide the
pens to the connectivity of free space as the orientation changesarch for an interference-free configuration, but often consider
Free space connectivity information is essential to ensure thatmaltiple free space components.
collision occurs with an obstacle along the path. References [21] and [22] present a kinematic analysis al-

Reference [14] presents a search algorithm for motion plagerithm for mechanisms containing higher pairs, such as door
ning with six degrees of freedom. The planner is complete witbcks, gearboxes, and transmissions. The mechanism is decom-
a resolution. The emphasis is on finding a path in reasonabplesed into subassemblies. The behavior is described as a contact
computational time. No attempt is made to optimize the patturve in 2Dc¢-space of the subassembly. The curve partitions
Moves suggested by local experts are then implemented usihg c-space obstacle from the free region. The behavior of the
a combination of pure translations and pure rotations. Metringechanism is described as a composition of the-Apaces of
are provided to compute distance between two configuratiotie constituent assemblies. The mechanisspace is divided
in c-space. By using stability enhancing heuristics we haweto regions that characterize its operating modes. An operating
reduced the dimensionality of the search-space from sixode is defined by the contacts that exist between members of
dimensional{p.., py, p., ¢. ¥, 6}-space to four dimensional the assemblies. The dimensionality of thepace of a mecha-
{p=, py, p=, 8}-space. The metric used by Donald might baism withn assemblies, each with 2 degrees of freedorpis
useful if we want to include orientation also in the quadratilowever, the mechanism behavior has been captured by just
cost function used by the prototype planner. studyingn two-dimensionalc-spaces. The dimensionality of

Reference [15] performs path planning for an de- c-space of a stack with parts is6n. We determine near-optimal
gree-of-freedom manipulator by representing thepace stacking configurations by analyzimg3-dimensionat-spaces.
obstacles usingr — 1 dimensional slices. These slices ar@hree of the parameters are orientations and are fixed using sta-
represented using slices in— 2 dimensions and so on. Nobility heuristics. This is achieved by incrementally adding parts
attempt is made to characterize thspace obstacle surfacesto the stack.
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References [23] and [24] use thespace regions described For convex polyhedra, computation ot:aspace obstacle in
above for kinematic simulation of mechanisms. The prografw.., p, }-space and{p,, py, p-}-space can be performed in
takes a driving motion, internal forces, and time allotment &3(n) andO(n? log n) time respectively [5], where is the total
additional inputs and generates animation and an interpretatrmamber of vertices of the polyhedrons. One reason computation
of the ensuing behavior. The focus is on rapid generation of parthese spaces is easy is thatpace obstacle corresponding to
tial c-spaces that are traversed by the mechanism in the couageolyhedron in thep.., p,,, p. }-space of another polyhedron
of the simulation. The user-provided driving motions determirie polyhedral. This is not true once orientations are also con-
which regions of the:-space are computed. For the stackingidered. Hence obtaining a closed form description is far more
problem, the:-space regions to be computed are determined Hifficult in c-space dealing with one or more of the parameters
checking for collision between convex components of the shegti, and®6.
metal parts using fast interference detection tools [4]. Reference [5] provides a conservative description of the

Mechanism design usingspace based techniques is more-space obstacle ifp., p,, 6}-space. The obstacle is repre-
difficult than mechanism modeling and simulation. This is besented as a set of slices. Each slice is a regigpin p, }-space
cause transformation from a physical mechanism te-#pace representing union of positions resulting in interference for
is unique. However, the inverse transformation is not unique @agy orientation in the interval corresponding to that slice.
many mechanisms with multiple parameter values can achiéie use stability enhancing heuristics to determine promising
the same kinematic behavior. Joskowicz and Sacks [19] haxadues of parameterg and ¢». This reduces the-space to
worked on interactive parametric design of mechanisms. Thieg searched to four dimensiongb., py, p., 6}-space. We
avoid the unigueness problem by first modeling ¢kspace be- use Lozano-Perez’s algorithm to computspace obstacles
havior of a given mechanism and modifying its parameters by {p., py, p-}-space. Further, we have an algorithm that
small amounts to obtain a desired change indispace curve. characterizes the effect on the obstacle of rotating one of the
Stahovichet al. [25] use qualitative=-space curves to proposeobjects about an axis. The input to the algorithm is the axis of
alternate mechanisms to achieve the same kinematic behavigation and the output is the orientation intervals within which
as a user-specified mechanism. The qualitathepace curves the c-space obstacle topology stays the same. Within each
approximate the reatspace curves and limit the number of deinterval the obstacle geometry for one orientation is computed.
signs to be considered while transforming back frespace.  This information can be used to compute the obstacle for other

References [26] and [27] present an algorithm for worst-casgentations in the same interval. Therefore, by specifying the
and statistical kinematic tolerance analysis of mechanisms witiation axis ag-axis (see Fig. 4), we can obtain a closed form
parametric part tolerances. The kinematic variations are matgscription of the obstacle {p., p,, p-, #}-space.
eled as parametric surfaces in the mechanispaceC-space  References [11] and [13] study the effect of varying
based tolerance analysis requires dividingdtspace into free {¢, %, 8} on thec-space obstacle itp.., p,, p-}-space and
zone, interference zone, and contact zone. In the free zone, triivede {¢, v/, 8} into noncritical and critical regions. In a
is no interference for all mechanism parameter values lying m@ncritical region, the topology of thespace obstacle stays
the tolerance zone. Similarly, in the interference zone, theretlie same. They also study the effect on-space obstacle in
interference for all mechanism parameter values. In the caix-dimensional configuration space when a polyhedron is
tact zone, interference exists only for certain parameter value®ving in a three-dimensional world with polyhedral obstacles.
The inputs to the algorithm are the nominal motion path, thEhe significance of critical orientations is explained, but no
pair-wise contact zones of the interacting parts, and the paramgorithm is presented to compute the critical orientations.
eter variations. The actual motion path is approximated by aAvnaim and Boissonnat [28] present a polynomial time algo-
sequence of-space points. The output is the kinematic varigiithm for construction of configuration space obstacles for one
tion of eachc-space coordinate at each path point. Currently, v&et of planar polygons with respect to another set of planar poly-
account only for robot positioning errors while computing ingons. In their work, a closed form description of the obstacle
terference-free configurations. The stacking planner can be &oundary is formulated as a transformation fron®-aegion.
tended to use this representation to account for part tolerandée intervals within which the regiof is described by a con-
also. Once the part configurations in a stack are determined, #i@nt analytic function is analogous to the orientation interval
effect of variation around the nominal configuration on interfewithin which the topology of the obstacle {p.,, p,, p. }-space
ence and stability can be modeled. stays the same. References [29] and [30] investigate the effect of
change iré on thec-space obstacle ifp.., p, }-space. The algo-
rithm represents-space obstacles {p.., p,, 6}-space as set of
slices, each aregion {fp.., p, }-space. It discretizes thespace

The success of configuration space based techniques ifdp intervals of equivalent slices separated by critical slices. In
the applications discussed above hinges on computationGifapter 4, we compute critical orientation ranges within which
c-space obstacles in reasonable time. The particular applicatiba c-space obstacle topology {p.., p,, p-}-space remains
determines what is reasonable time. Some applications requiomstant. The critical slices are analogous to these critical ori-
rapid but approximate descriptions of thespace. Others entation ranges.
require an accurate description that can be computed off-lineThe algorithm developed by [6], [31] uses facet intersections
Since our work deals with polyhedral parts, we will primarilyto construct the obstacles in configuration space. Given two
discussc-space obstacle computation for polyhedral objects. polygons as input, the algorithm computes tkspace obstacle

C. Configuration Space Obstacle Computation



AYYADEVARA et al. INTERFERENCE-FREE POLYHEDRAL CONFIGURATIONS FOR STACKING 163

in {p., py, 6}-space. The projection of the obstacle in @ompute interference-free positions. One way to achieve fewer
user-supplied direction is generated without constructing thenvex components is to partition the flange along lines that are
actual obstacle. The representation includes a complete mepraeallel to edges of the flange and edges of the concavities and
and topological description. This information is required tboles of the flange.

enumerate all the possible contact states between the polygon$Ve also need a cost function that captures properties of the
This algorithm is polynomial in the number of vertices of thestack as a whole. At the same time, the cost function should be
two polygons. There is however no straightforward way tquadratic to enable use of closed-form quadratic optimization
extend this approach to higher dimensions. Information abautthods to compute interference-free positions for a candidate
contact states is useful for studying tangling of sheet metaiientation. One way to achieve this objective is to have a stack
parts. Parts are considered tangled when flanges of one madt function that uses the bounding box of the stack to mea-
are jammed in holes or slots of another part and cannot sere floor space utilization and stack c.g. as a stability measure.
handled by a robot. A conservative method to identify tanglehe planner can be run for different values«offor the cost
prone configurations is to check if small perturbations from fainction currently used. The plan which gives the lowest cost as
configuration lead to a change in the contact state. calculated by the stack cost function is then chosen as the final

stacking plan.
D. Configuration Space Based Analysis for Sheet Metal Parts Currently, the planner sometime builds stacks as a set of

Zussman and Horsch [32] present a method for extractini%lumns' The cost function should have a term that encourages

bent part out of the press brake without colliding with the m he more stable alternative of staggering parts to increase the

chine. The search for interference-free configurations is péwmber of parts with which a part s in contact.

formed in three-dimensional discretized configuration space.

The planning process is accelerated by identifying critical part APPENDIX A

profiles which are closest to the punch and die and hence, most CONFIGURATION SPACE TERMINOLOGY

likely to collide with the machine. The profiles are identified The configuration parameter§p,., p,, p-, ¢, ¢, 6} (see
after decomposing the part into convex parts. They use a fgg§. 4) of a rigid body define a six-dimensionednfiguration
algorithm developed by [33] for computing distance betweespace(c-space). These six parameters describe the transforma-
convex objects in three-dimensional space. An extension of thiisn from a global coordinate frame to a local coordinate frame
work could be used to perform path planning for the stackingitached to the rigid body. Every point in this space refers to a

robot once the stacking plan has been generated. certain configuration of the rigid body in the real world.
The set of configurations of a rigid bodythat result in inter-
IX. CONCLUSION AND FUTURE WORK ference with another rigid bod# is called ac-space obstacle

We have discussed two techniques to speed up the expengw with rgspect th denoted”'(4, B).' TWO bod|'es are con-
step ofc-space obstacle computation. sidered to interfere if the volume of their intersection is nonzero.

) . . . . . ... Hence bodies touching each other are not said to interfere. The
D Th_e first technique identifies orientation intervals W'th'%et of configurations ofi such that there is no interference be-
which topology of face-edge-vertex graph ot-&pace y een 4 and B is called thefree spaceadenotedF'(A, B). For
obsta(\:/l\? ';]qporl]qu for a pair of co{;vex sohds sta?/s CO'?;fny configuration ofA lying in the interior of C(A, B), there
stant. Within this orientation intervat;space obstacle ge- i penetration between the two bodies. For any configuration of

ometry for one orientation can be extrapolated to Obtai[il lying in the interior of F(A, B), A and B are not in contact,

obstacle geometry for another orientation. In our expeti - any configuration on the boundary separatifigi, B) and

ments, extrapolation takes about 12% of the time it tak%s(A B), A and B are touching each other
to compute an obstacle from scratch. e ;

. . For example in Fig. 21, three positions of polygamelative
2) The second tgchmq_ue enables us to compute Ir‘t‘:"rf?c;'polygonB are shown on the left hand side and thepace
ence-free configurations for a pair of concave solids bgbstacleO(A, B)in {p,, p,}-space is shown on the right hand

par;[LaIIg conkstructlngc-”spacelzl ]? bStaflﬁ g(:]jeolmﬁtry;[ Th't%'de. Position 1 lies on the boundary between the obstacle and
method works especially well Tor polyhedral Sheet metgly space, position 2 lies in the interior of the obstacle, and

parts with alarge base fa_ce andflanges. We have seen ition 3 lies in the interior of the free space, i.e., outside the
for a sheet metal part with 79 convex components, lec-%pace obstacle
than 0.1% of the potential convex component pairs were |
evaluated to obtain an interference-free configuration.
We have useds-space based algorithms for interferenc APPENDIX B
analysis by a stacking planner. For every candidate orientatig}?NSTRUCT'ON OFC-SPACE OBSTACLE IN {ps;, py, P2 }-SPACE
the interference analysis module provides a list of interfer- Consider the pair of convex polygorsand B in Fig. 22.B
ence-free positions sorted in increasing order of the cost. Thésstationary and4 is allowed to translate, but not rotate. The
list is searched for a position that satisfies stability, graspimmplygons are shown on the left-hand side in world coordinates
and stacking plan feasibility concerns. and thec-space obstacle correspondingan {p.., p, }-space
We need a method more efficient than triangulation for dés shown on the right hand side. The following discussion also
composing concave flanges of a sheet metal part. This woualpplies to obstacles {p.., p,, p- }-space. The-space obstacle
reduce the number of interference pairs we need to proces<tod, B) can be expressed as the Minkowski sunmBoand A
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whereR, _, is the rotation matrix from (4). We can then expand
(5) as follows:

(V7 = BP) = Ree (Vi = F5')]
03 o [(BP — FP) x (BP — )
_ A A B B
World Coordinate System Configuration Space (R’Ee (FlB i )) % (}} F:S )
. _ _ — (FY = 1Y) x (Re,o (F5 = 1Y)
Fig. 21. Two polygons and their correspondirgpace obstacle. + RZ7 0 ((Ff _ F(ji) % (FéA _ F(ji))] —0. (14)
The rotation matrix is given by the following equation:
v cos(f) —sin(6) 0
S R. ¢ = | sin(8) cos(f) O (15)
0 0 1
VR VA Using the above equation and the relationships
V2P - VA 2tan(0.56) 1 — tan?(6)

VB-VA V-V sin(f) = and cos(f) =

1+ tan?(0.56) 1+ tan?(0.56)
World Coordinate System Configuration Space

we can simplify (14) to the following form:

Fig. 22. Construction of-space obstacl€'(A, B).
A2 4+ Bt4+C =0, t = tan(0.560) (16)
reflected about the origin of world coordinate frame in Fig. 22vhere A, B, andC are constants. Solving this quadratic equa-

Reference [5] shows thdi(A, B) is convex and can be con-tion and taking the inverse tangent gives us the critical angle for

structed using vertices of andB. Thec-space obstacle is theone interior point for one face of the convex hull.

convex hull of the points obtained by the pair-wise subtraction
of vertices ofA from vertices of B. Hence, we have the fol-
lowing equation:;

of
C(A, B) =ConvexHull ({Pij = VjB —

i=1,2, ...,

Vi,

nAvj:1727"'7nB (12)

where ViA, i = 1,2 n4 are vertices ofA and V5,
7 = 1,2, ng are vertices ofB. This computation can be
performed inO(n 4 - np - log(na - ng)) [3] ime wheren 4 is
the number of vertices oft, andn g is the number of vertices
of B.

APPENDIX C
COMPUTATION OF CRITICAL ORIENTATION ¢

Starting from (5), we show how to compute the critical ori-
entation for a single poink;; from Appendix B with respect to
a face of the convex-space obstacld?;; is defined in (12). Let
Fy, F1, andF5 be three consecutive vertices of the convex face
of interest. Since, these vertices are three of the extreme (blac
points from Fig. 22, they are also formed by pair-wise subtrac-
tion of verticesFy!, I/, and F5' of polygon A from vertices
FP, FP, andFf of polygonB respectively. Using (4), we can
define the face normal from (5) as

FPNO) = (FP = R. o F}") i=0,1,2
_ [FPNO) — FPAO)] x [FPA(6) — FPA(0)]
PO = PO [[7740) - FFAO)]]

(13)

ko

(20]

(11]
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