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Interference-Free Polyhedral Configurations
for Stacking

Venkateswara R. Ayyadevara, David A. Bourne, Kenji Shimada, and Robert H. Sturges, Jr.

Abstract—This paper uses a configuration space (-space)
based method to compute interference-free configuration for
stacking polyhedral sheet metal parts. This work forms the
interference analysis module of a stacking planner developed by
us. Parts in a stack should not interfere with each other and should
also satisfy stability, grasping, and stacking plan feasibility related
constraints. We present two techniques to speed up the expensive
step of -space obstacle computation. The first technique identifies
orientation intervals (for a convex pair of solids) within which the
topology of face-edge-vertex graph of an obstacle stays the same.
Within this interval, -space obstacle geometry for one orientation
can be extrapolated from obstacle geometry for another orienta-
tion. Our experiments show that extrapolation takes an order of
magnitude less than the time taken to compute an obstacle from
scratch. The second technique computes near optimal interfer-
ence-free positions for a discrete orientation without having to
compute the complete -space obstacle. Our experiments show
that, for complex sheet metal parts, less than 0.1% of the convex
component pairs are evaluated in order to compute an interfer-
ence-free configuration. We describe a configuration space-based
method to compute a list of interference-free configurations that
can be tested to see if they satisfy the above mentioned constraints.
The cost function is a weighted sum of components that penalize
floor space utilization and height of center of gravity of parts.
The algorithm is able to pick nested stacks that tend to be stable
and compact without having to explicitly enumerate features that
can be nested. It is also able to accommodate flanges in holes to
reduce the value of the user specified cost function. We use three
test parts to illustrate the effect of the two techniques to speed up
-space obstacle computation. We also show the stacking plans

generated for three different values of the weighting parameter in
the cost function used by the stacking planner.

Index Terms—Computer-aided process planning, configuration
space, interference, sheet metal, stacking.

I. INTRODUCTION

T HERE are many applications that require the precise rela-
tive placement of pairs of complex polyhedral parts: e.g.,

packing, nesting, and stacking. Part stacking is especially dif-
ficult, because it combines the problem of final configuration
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Fig. 1. A compact stack with 3-D nesting leading to compact yet stable stacks.

(from packing and two-dimensional (2-D) layout domains) with
stability concerns (from assembly planning). The user can pro-
vide a cost function that addresses stability and/or space uti-
lization concerns. It is required to compute an interference-free
configuration that minimizes the user-specified cost function.

Optimal stacking of polyhedral parts is difficult. Even the
2-D form, i.e., optimal 2-D layout of blanks on a sheet, with
no stability concerns, has been shown to be NP-hard by [1].
Hence, determination of a globally optimal part stack is virtu-
ally impossible. We have developed a stacking planner [2] that
uses a “generate and test” approach to generate near optimal
stacking plans. Such a planner needs tools for interference anal-
ysis and stack stability analysis. We have presented tools to eval-
uate stack stability in [2]. This paper focuses on another aspect
of stacking: generating interference-free part configurations that
minimize a user-specified cost function. This problem is also of
interest to other areas such as part nesting, assembly planning,
and packing.

For the purpose of stacking, there are certain qualities that
have to be captured by the method we choose to compute inter-
ference-free configurations. One is the ability to perform three-
dimensional (3-D) nesting of parts (see Fig. 1). This often leads
to stable and compact stacks. Designers often build in features to
facilitate part nesting. Trying to enumerate all features that en-
able nesting can be troublesome. It is preferable that the planner
seeks out nested configurations. The second quality is the ability
to accommodate protruding flanges in holes. This is useful for
sheet metal parts. Finally, we need a mechanism to ensure clear-
ance in the plane between parts to prevent robot positioning er-
rors from resulting in collisions.

A. Problem Overview

This paper focuses on one aspect of planning for stacking:
computation of interference-free positions and orientation for
parts in a stack. The global problem we are addressing is to stack

identical parts while attempting to minimize a cost function
that accounts for both part stability and floor space utilization.

1042-296X/02$17.00 © 2002 IEEE
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Of course, a stack of parts is physically realizable only when
none of the parts interfere with each other.

We describe a method to apply configuration space (-space)
based techniques used for robot path planning to compute a
near optimal interference-free configuration for a polyhedral
part while adding it to an existing stack (Appendix A contains
an introduction to -space terminology). The final configuration
has the following qualities:

1) minimizes a user-specified cost function;
2) lies inside a given space of configurations;
3) avoids interference with parts already in the stack.
The transfer of -space based techniques from robot path

planning domain to stacking domain is not straightforward.
Robot path planning involves computation of an interfer-
ence-free path between start and goal configurations of a
robot. Both start and goal configurations are interference-free.
The focus is on generating information about connectivity of
the set of interference-free configurations and not the exact
surfaces bounding this set. In the case of stacking, the desired
configuration is often not realizable due to interference. Fur-
ther, since the cost function is to be minimized, connectivity
information alone for the set of interference-free configurations
is insufficient. Only an exact description of the bounding
surfaces of the configurations that result in interference enable
the computation of the optimal interference-free configuration.
The requirement in robot path planning of guaranteeing no
interference at all configurations along the path does not apply
to optimal part placement.

The main contributions of this paper can be summarized as
follows.

1) A technique to speed up computation of the set of con-
figurations of a rigid convex polyhedral body that result
in geometric interference with another rigid convex poly-
hedral body. The technique involves extrapolating the set
of positions that result in interference for one orientation
to obtain the corresponding obstacle for another orienta-
tion. We show how to compute the interval of orientations
within which this extrapolation is valid.

2) A technique to speed up computation of an optimal po-
sition (constant orientation) for a rigid concave polyhe-
dral body such that there is no geometric interference
with other rigid concave polyhedral bodies. We are able
to compute the optimal interference-free position (mini-
mizing a quadratic cost function) by only partially con-
structing the set of configurations that lead to geometric
interference.

3) Application of -space based techniques to planning
for stacking such that nested stacks are preferred (as in
Fig. 1), protruding flanges can automatically be accom-
modated in holes, robot positioning error is accounted
for by the planner.

We first briefly describe the stacking planner. We then formu-
late the more specific problem of computing near-optimal inter-
ference-free configurations for a part being added to a stack.
We present two techniques to speed up this computation. This
is followed by a discussion of the results from using algorithms
developed in this paper for interference analysis by the stacking

planner. We then review previous work on computing set of con-
figurations that result in interference between two polyhedrons
and their use in domains other than stacking. Finally, we present
conclusions and recommendations for future work.

II. STACKING PLANNER

A. Global Problem Statement

The problem addressed by the planner involves stacking
identical parts. A detailed description of the planner is given in
[2]. Here, we describe a few relevant features of the planner. The
cost function for the stack is the sum of costs computed for each
part in the stack. The first two parts of the function penalize floor
space utilization. They measure the planar distance between the
center of the floor space and the vertices of the bounding box of
the part. This component encourages parts to be pushed toward
the point ( , , ). The third component of the cost function
is a measure of stability. It penalizes the height of the center
of gravity of each part. For any orientation, this component en-
courages all parts to be placed on the floor to minimize the c.g.
height. The cost function that has to be minimized is given as
follows:

(1)

where
parameter that varies between 0 and 1 and
is set by the user specifying the importance
of space utilization relative to stability; when

, there is no cost for space utilization
and when , there is no cost for increase
in coordinate of c.g. of the parts constituting
the stack;
number of parts in the stack;
set of vertices for part;
-coordinate of center of gravity of part;

center point or a corner of the designated floor
space area.

Fig. 2 shows stacks of 121 cubes for different values of.
The effect of increasing the cost of space usage relative to cost
of increase in stack height can be seen from the transition of the
stack from a flat pattern to a single column. For intermediate
values of , the stack is a pyramid. While we have shown the
whole gamut of the cost function variation, most users will opt
for a value of or less.

B. Global Problem: Approach

The planner builds the stack part by part (see Fig. 3 for an
example stack with fifteen parts). Every time a new part is added
to an existing stack, parts already in the stack are considered
stationary. In order to generate compact stacks, the planner uses
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Fig. 2. Effect of increasing importance of floor space utilization relative to
stack stability.

a two-stage approach to add a new part to an existing stack. In
the first stage, it tries to locate the part such that the bounding
box of the stack is not enlarged or enlarged by a small amount
to accommodate a nested configuration. In Fig. 3, the planner is
successfully able to add parts #2, 4, 6, 8, 10, and 12–15 without
expanding the bounding box of the stack. If no configuration is
found in the first stage, the planner tries to locate the new part

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

(l) (m)

(n) (o)

Fig. 3. Incrementally building a stack with fifteen parts: (a) 1 part, (b) 2 parts,
(c) 3 parts, (d) 4 parts, (e) 5 parts, (f) 6 parts, (g) 7 parts, (h) 8 parts, (i) 9 parts,
(j) 10 parts, (k) 11 parts, (l) 12 parts, (m) 13 parts, (n) 14 parts, and (o) 15 parts.

without considering the bounding box of the existing stack. In
Fig. 3, the second stage is required for parts #1, 3, 5, 7, 9, and
11.

Every part configuration has to satisfy the following condi-
tions.

1) There should be no geometric interference.
2) The part should be supported by other parts and the floor

such that it is stable.
3) The part should have a horizontal face that can be grasped

using suction cups.
4) It is possible to add the part to the stack by translating it

along direction.
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Fig. 4. Polyhedral configuration parameters.

Clearly, the part configurations have to satisfy a number of con-
cerns other than interference avoidance. The focus of this paper
is development of algorithms to generate a list of promising in-
terference-free configurations [satisfying condition 1)] that can
then be evaluated to see if they satisfy stability, grasping, and
stacking plan feasibility concerns [satisfying conditions [2)–4)].

Consider adding a new part to an existing stack. We wish to
compute configuration of the new part that minimizes a cost
function that is convex with respect to the position of the new
part. The new part once added to the stack should not interfere
with other parts in the stack and should lie inside the volume ob-
tained by extruding the allocated floor space with the maximum
permissible stack height.

As shown in Fig. 4, for every new part that has to be added to
an existing stack, we have to determine three position parame-
ters and three orientation parameters .
Our stacking planner enumerates promising stable and gras-
pable orientations of a part, thus choosing orientation param-
eters . Let us assume for the rest of this paper that these
two parameters are fixed. That leaves four configuration param-
eters to be determined: .

The problem can be formulated as follows. Given

1) a new part with position and orien-
tation , where and are constant;

2) an existing part stack;
3) a user-defined cost function that is convex in po-

sition parameters . The present planner uses
the cost function from (1), and

4) volume obtained by extruding the floor space by the max-
imum permissible stack height:;

compute the configuration as a solution to the
problem

subject to

(2)

where is the space of positions such that the polyhedron
lies inside the volume . A 2-D example is shown in Fig. 5 for
two values of . We can see that is a function of and is given
by the following relation:

(3)

(a)

(b)

Fig. 5. Obtaining the set of permissible positions
 from volume�. (a)
 =

0 . (b)
 = 270 .

III. A PPROACH

Optimal interference-free configuration computation of
polyhedral parts is difficult. Even the 2-D form of (2), i.e.,
optimal nesting of blanks on a sheet ( , )
has been shown to be NP-hard by [1]. Hence, determination of
a globally optimal part configuration is impossible in polyno-
mial time. However, computing a closed-form description of
-space obstacle in -space is more difficult than

computing the corresponding obstacle in lower dimensional
-space for a discrete orientations of the new part.

We seek to compute near optimal solutions without exhaus-
tively covering the search space. We consider only discrete
values of . Only the position parameters now remain to be com-
puted. The main advantage of dealing with -space
is that -space obstacles and free space regions corresponding
to polyhedrons are polyhedral. Hence, the constraints for the
problem in (2) are linear. Computation of a-space obstacle
in -space is described in Appendix B. If the cost
function is convex, it is easy to compute the optimal interfer-
ence-free position using a closed form method. By considering
discrete orientations, we have traded optimality for the ability
to produce near optimal configurations in reasonable time.

A. Techniques to Speed Up Interference-Free Configuration
Computation

A near optimal interference-free configuration can be com-
puted by first determining the best interference-free position
for each discrete orientation from (2) and then choosing the
best configuration of the lot. Determination of the best interfer-
ence-free position for a discrete orientation requires the compu-
tation of the -space obstacle for the existing stack with respect
to the new part. The best interference-free position in this ori-
entation is the position that lies in the region obtained by sub-
tracting the -space obstacle from the region of permissible po-
sitions and minimizes the cost function from (2).
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For every discrete orientation, we require the computation-
ally expensive step of computing a-space obstacle. In order to
speed up the computation, we address the following questions.

1) Is it possible to reuse-space information computed for
one discrete orientation for other discrete orientations?

2) Is it possible to compute the interference-free position for
a discrete orientation by constructing only a portion of the
corresponding-space obstacle?

We will show in Sections IV and V that the answer to both these
questions is yes. This results in a significant saving in computa-
tion time.

IV. EXTRAPOLATION OF A C-SPACE OBSTACLE IN

-SPACE FROM ONE ORIENTATION TO ANOTHER

ORIENTATION

This section describes the first of two techniques used by us to
speed up-space obstacle construction. First we characterize the
effect of changing orientation parameteron -space obstacle
geometry and topology of its face-edge-vertex graph. Next we
identify orientation intervals within which the topology stays
constant and we can easily extrapolate geometry of the obstacle
from one orientation to another.

A. Effect of Change in Orientation on-Space Obstacle
Topology in -Space

Appendix B shows us how to compute a-space obstacle
for convex polyhedron with respect to a convex

polyhedron in -space. We can see from (12) that
the -space obstacle is convex. Let us examine the effect on this
obstacle of allowing to rotate about theaxis of world coordi-
nate frame. The points used to compute the obstacle can be
divided into two mutually exclusive sets: black extreme points
and white interior points.

As is rotated, the points are transformed as follows:

(4)

where is the rotation matrix and ,
are the vertices of at . As is rotated, the connectivity
graph topology of remains the same as long as the
black points remain extreme points and the white points remain
interior.

If one of the interior points becomes an extreme point or vice-
versa (see Fig. 6), the topology of the obstacle changes. As the
value of changes, a necessary condition for an interior point
to become an extreme point is that it lies inside one of the faces
of the convex -space obstacle. The critical orientationwhen
this condition occurs is given by the following equation:

(5)

where is a vertex on one of the faces of and is
the normal of the same face. Checking for this condition is a
conservative method of evaluating if an interior point is about

Fig. 6. Effect of rotation of polyhedronA on c-space obstacleC(A; B).

to become an extreme point. Appendix C shows that we can
compute critical orientation by solving a quadratic equation
for and then computing the inverse tangent.

We need to perform this step for every point for every face
of the convex -space obstacle. Therefore, this requires the com-
putation of the -space obstacle from scratch using the proce-
dure in Appendix B for one orientation in every interval within
which the topology of the obstacle stays the same.

B. Extrapolation of -Space Obstacle Using Constant
Topology Orientation Interval

Let us consider computing a-space obstacle for discrete
values of starting with . The obstacle for can be
computed using results in Appendix B in

time. The nearest critical orientation where the-space ob-
stacle topology changes can be computed by solving (5) for all
points using the procedure from Appendix C. This gives us
the range of within which the topology of the obstacle stays the
same and we refer to this range as constant topology orientation
interval. For all subsequent discrete orientations in this interval,
the -space obstacle can be computed in time by
just determining the new location of the black extreme points in
Fig. 6 using (4). For the first discrete orientation that lies out-
side the constant topology orientation interval, we compute the
-space obstacle from scratch as in the case of . For the

new -space obstacle, we can once again compute the new con-
stant topology orientation interval and repeat the process.

The variation of obstacle topology for the polygons from
Fig. 6 is shown in Fig. 7. The orientation parameteris varied
from 0 to 90 . The obstacle in Fig. 7(a) is computed from
scratch using the procedure in Appendix B. The nearest critical
orientation is computed to be 45and the constant topology
orientation interval is [0, 45 ). Therefore, the -space obsta-
cles for 15 and 30 in Fig. 7(b) and (c) can be extrapolated
from the obstacle in Fig. 7(a). Similarly, we can compute the
obstacle for 45 [Fig. 7(d)] is computed from scratch, the new
constant topology orientation interval is computed to be [45,
90 ), and the obstacles for 60and 75 in Fig. 7(e) and (f)
respectively are extrapolated from obstacle in Fig. 7(g). The
-space obstacle [Fig. 7(h)] for 90is then computed from

scratch. This example is not trivial as sheet metal parts are
decomposed into convex components before computing the
-space obstacles. Hence, interactions between triangular and

rectangular polygons that have been extruded by the sheet
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 7. Variation ofC-space obstacle topology as� changes. (a)� = 0 .
(b) � = 15 . (c) � = 30 . (d) � = 45 . (e)� = 60 . (f) � = 75 . (g)
� = 90 .

metal thickness occur often in practice and the discretization
step for is 1 –5 .

V. INTERFERENCE-FREE CONFIGURATION COMPUTATION

USING PARTIAL -SPACE OBSTACLES

In this section we discuss the second technique used by
the authors to speed up-space obstacle construction. This
technique results in significant savings in computation time
when applied to concave solids that consist of a large number of
convex components. This technique is applied to computation

Fig. 8. A sheet metal part with 79 convex components.

of interference-free position for a concave solid with respect to
concave obstacles for a discrete orientation.

A. Interference-Free Configuration Computation for One
Discrete Orientation

Consider the part design shown in Fig. 8. This sheet metal
part has 79 convex components. Let us assume that the goal is
to compute an optimal interference-free position for such a part
with respect to an existing stack. For simplicity, let us assume
that the existing stack has only one part. Computing the-space
obstacle for the part in Fig. 8 requires computing the obstacle
first for 6241 (79) convex component pairs. Therefore, compu-
tation of the complete-space obstacle for a concave polyhedral
pair for even a single orientation can be time-consuming.

It is, however, possible to compute a near-optimal interfer-
ence- free position (see Fig. 9) without having to compute the
full -space obstacle for every discrete orientation, i.e., for each
discrete orientation, we compute the-space obstacles for only a
few convex component pairs. It should be noted that the solution
we obtain by looking at only a portion of the obstacle is as good
as the one that would be obtained by looking at the complete
obstacle for that discrete orientation. We are not compromising
on the solution quality by ignoring portions of the-space ob-
stacle.

Fig. 9(a) shows the new part, Fig. 9(b) shows the convex de-
composition of the part, and Fig. 9(c) shows the set of permis-
sible positions for the new part. Here are the steps for computing
a near optimal interference-free position for this orientation.

1) Choose a candidate optimal position for the new part
[Fig. 9(d)] that minimizes the cost function from (2).

2) Construct the list of interfering convex pairsshown in
Fig. 9(e).

3) Construct the -space obstacle for these interfering
convex pairs [Fig. 9(f)].

4) Subtract this -space obstacle from the set of permissible
positions.

5) Choose a new candidate position that minimizes cost
function and go to step 2).

We repeat this process until no additional interference is de-
tected in step 1). In the example shown in Fig. 9, this occurs
after just one iteration and the final position is shown in Fig. 9(i).
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

Fig. 9. Computation of an interference-free position using partialC-space
obstacle. (a) Part. (b) Convex decomposition. (c) Space of candidate positions.
(d) Initial position. (e) Interference convex pairs. (f) C-space obstacle for
iinterfering convex pairs. (g) Free space after substracting C-space obstacle
from (f). (h) Interference pairs in new candidate position. (i) No interference
detected in new candidate position.

During each iteration, the set of permissible positions shrinks in
step 2) as a-space obstacle is subtracted from it. Therefore,
there are only two possible outcomes to the iterative process de-
scribed above. One is that an interference-free position is found
and the other outcome is that the set of permissible positions
shrinks to a null set as a-space obstacle gets subtracted from it
in step 2) of each iteration.

1) Decomposition of a Concave Part Into Convex Compo-
nents: We decompose a sheet metal part into convex compo-
nents by looking at a zero-thickness model of the part. Every
convex face of the part is extruded by the sheet metal thickness
to form a convex component. Every concave face is tessellated
into triangular faces and each triangular face is then extruded by
the sheet metal thickness to form a convex component. The part
shown in Fig. 8 is decomposed into 79 convex components. It is
also possible to merge some triangles into larger convex pieces
[3].

2) -Space Obstacle for a Concave Part With Respect to
a Concave Obstacle:Appendix B discussed-space obstacle
computation for convex polyhedral pairs. Let us assume that the

Fig. 10. CompleteC-space obstacleC(�; �) for existing stack�with respect
to the new part�.

new part and the existing stack from (2) are concave and are
decomposed into and convex components, respectively

(6)

where and are convex components of the new partand
existing stack , respectively.

The -space obstacle is the union of the obstacles
for all the convex component pairs . Hence, we have
the relation

(7)

3) Interference Pair Lists:Interference detection between a
polyhedral pair can be performed much faster than-space ob-
stacle computation for the same pair. We use an interference
detection tool called RAPID [4]. RAPID models a polyhedron
using a hierarchical data structure called an oriented bounding
box. At the lowest level, the model surface is represented as
a set of triangles. RAPID considers polyhedral pairs that are
just touching each other as interfering. We have supplemented
RAPID with some reasoning about triangle pairs to differentiate
between triangle pairs that are touching and those that are pen-
etrating. Thus, we can test all the component pairs for
interference and compile a list of interference pairsas fol-
lows:

(8)

The -space obstacle corresponding to this list of
interference pairs is the union of the obstacles for the individual
convex pairs. This obstacle [see Fig. 9(f)]-space obstacle

(see Fig. 10) for the existing stack corresponding
to the new part. Consider the free space region obtained by
subtracting this obstacle from the set of permissible positions
for the new part. For any position of the new part in this free
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space region, there is no interference between convex pairs of
list .

B. Quality of Interference-Free Position Computed Using
Partial -Space Obstacles

The cost of the interference-free configuration computed
using this procedure is as low as the cost of an interference-free
configuration computed by a method that constructs the
complete obstacle for every discrete orientation. For the
polyhedral pair ( ), there are possible interference
pairs [see (6)]. Consider a single discrete orientation. The
-space obstacle is the set of positions that result

in interference between one or more of these possible
interference pairs. The-space obstacle is the set
of positions that result in interference only between one or
more interference pairs that are present in list. Therefore,

is a subset of . From this, we can infer
that the set of positions , where no interference exists
between the interference pairs of , is a superset of free
region , obtained by subtracting-space obstacle

from the set of permissible positions .
Hence we have the relation

(9)

The cost of the optimal configuration in region is a
lower bound of the cost of the optimal configuration in the re-
gion . This shows that for every discrete orienta-
tion , the cost of the interference-free configuration obtained
by considering only interference pairs of is as low as the
cost of the interference-free configuration computed by con-
structing the complete-space obstacle and free
region .

C. Interference-Free Configuration Computation Over All
Discrete Orientations

One way to compute the best interference-free configuration
for a new part is to compute the interference-free position for
every discrete orientation , , using
the iterative procedure from Section V-A and select the best of
the computed positions. In this section, we show how to further
speed up the process.

The best configuration is the one minimizing the cost function
from (2). Let us assume we have computed an interfer-

ence-free position for one candidate orientation such that
there is no interference between the new part and the existing
stack. The value of the cost function for this configuration is

. For certain orientations, even accounting for a few
interference pairs can move so far, and hence increase the
value of the cost function beyond , that the current
orientation is not going to yield the optimal interference-free
configuration. We can therefore discard such orientations after
analyzing only a few interference pairs and completing itera-
tions till no interference is detected between the new part and
the existing stack.

We use a two-stage approach. In the first stage, for every dis-
crete orientation.

1) The new part is positioned at position that minimizes
the cost function .

2) We compute interference-free position accounting for in-
terference pairs encountered only at position.

3) The interference-free position and orientation are entered
into a priority queue along with the value of the cost func-
tion at this configuration.

The second stage of the algorithm consists of the following
steps.

1) Extract the cheapest configuration from the priority queue
2) If this configuration for new part is interference-free

with respect to existing stack, choose this as the optimal
configuration and stop.

3) Else, for current orientation, move to a new position ac-
counting for additional interference pairs encountered in
current position. Add new configuration to priority queue
with value of cost function at this configuration.

4) If priority queue is not empty, go to step 1).
5) Else, no interference-free configuration exists. Stop the

computation.
Thus, orientations are considered for the expensive step

of interference-free position computation only if they ap-
pear promising. If a certain orientation has a high cost after
processing only a few interference pairs, the corresponding
configuration is pushed to the bottom of the priority queue and
will not be considered again before ruling out other cheaper
orientations.

The complexity of this procedure is
where is the number of discrete orien-

tations considered and and are the number of vertices
of and , respectively. The cost of computing a convex
hull using all vertices of and is .
The parameter is the total number of interference pairs
considered and is the sum of the number of interference pairs
in all . In the worst case, the value of is still the total
number of interference pairs . However, we have seen
through tests that for complex parts, .

VI. I NTERFERENCEANALYSIS BY THE STACKING PLANNER

In this section, we describe how our stacking planner uses the
algorithms from the previous section for interference analysis.
Interference avoidance is one of many constraints part config-
urations have to satisfy while computing a stacking plan (see
Section II). We discuss some modeling and representation is-
sues that have to be resolved in order to use-space based anal-
ysis by a stacking planner.

A. Interference Analysis

One of the key components of the planner is an Interference
Analysis module. For a fixed orientation, it supplies a list of
interference-free positions for a new part to be added to an ex-
isting stack. This list of positions is sorted in increasing order
of cost. So far, we have assumed that the orientation parame-
ters and are constant. While adding a part to a stack, the
planner looks at a discrete orientation sets .
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Fig. 11. Representation of concave free space using convex components.

The planner using stability and grasping related constraints de-
cides these orientation sets. We wish to allow external modules
to rule out orientations for reasons such as ability of the robot
to grasp a part. Such concerns may not be addressed by the cost
function. Therefore, as recommended by Section V, we use a
two-stage approach to compute interference-free positions for
candidate orientations individually. Extrapolation (explained in
Section IV) from one orientation to another is still performed
for -intervals.

Consider a new part that has to be added to a stack. The
part orientation is constant. The interference analysis module
positions the new part on the floor at the center of the floor
space. RAPID collision detection library [4] is used to identify
the convex polyhedral pairs (one convex polyhedron from the
new part and other convex polyhedron from a stack part) that
interfere. A list of interference pairs is constructed and we use
a two-stage approach, which computes an interference-free po-
sition using this list.

1) Modeling of Free Space:One issue is how best to
represent the free space information. This will help us decide
how to compute a position minimizing the user defined cost
function over a free region in -space.
For a fixed orientation, the cost function used currently by
the planner is a convex quadratic function of .
There are closed-form methods available to solve for optimal
solutions in a convex space. With the orientation fixed, both
-space obstacles and free regions are polyhedral. Hence, it is

convenient to represent the free space as a set of disjoint convex
polyhedrons. Fig. 11 shows a concave free space split up into
six disjoint components. The position in the concave free space
that minimizes the quadratic cost function can be computed
as follows. Use a closed-form method to compute the optimal
position for each of the six convex components and pick the
best of the six positions as the optimal position.

Each convex component of free space is represented as a set
of linear inequalities that describe the bounding faces of the
component. These linear inequalities act as constraints while
solving for an optimal position in this component. Once an inter-
ference-free position is computed for every convex component,
we pick the one with the least cost among them as the interfer-
ence-free position for the free region as a whole.

2) Modeling of -Space Obstacles: -space obstacles in
our planner have two representations. One representation is
the same as the one used for convex components of the free

Fig. 12. C-space obstacles with and without accounting for robot positioning
error.

space, that is, modeling the obstacle as a intersection of half
spaces described by linear inequalities. This is possible because
obstacles in our interference analysis module are computed
only convex interference pairs. This ensures that the obstacle in

-space is also convex. The second representation
for an obstacle is a face-based representation that describes the
boundary faces of the obstacle. The boundary faces and their
vertices are used for extrapolation as discussed in Section IV-B.

The linear inequality based representation is useful for in-
corporating robot positioning errors. Let us assume that all the
inequalities have sign. Increasing the right hand side of the
inequality by the required amount enforces a separation dis-
tance between parts. Consider the representation of the two-di-
mensional -space obstacle from Fig. 12 without accounting for
robot positioning error. This is shown as the following equation:

(10)

Accounting for robot positioning error of, say, 0.1 changes
the representation to the following equation:

(11)

If a solid model had represented the obstacle, growing it by the
separation distance would have been messier. The faces of the
model have to be moved out and additional faces would have
to be generated to fill the gaps between the faces in their new
position.

3) Subtraction of a -Space Obstacle From a Free-Space
Component:Since we always represent the free space as a set
of disjoint convex polyhedrons, subtraction of an obstacle in-
volves the following steps.

1) Eliminate the free-space components that are completely
inside the obstacle.

2) If the free space component and the obstacle intersect,
subtract obstacle from the free space component. If the
modified free space component is concave, decompose it
into smaller convex components.

These tasks can be accomplished easily by manipulating the
sign of the inequalities describing the obstacle. There is no need
for the more expensive and nonrobust option of constructing
solid models of the free space components and obstacles and
performing Boolean operations on them.

In Fig. 13, we show the subtraction of an obstacle from the
free space components shown in Fig. 11. Componentlies
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Fig. 13. Subtraction of aC-space obstacle from free space.

completely inside the obstacle and hence is eliminated. Compo-
nent overlaps with the obstacle, but need not be decomposed
further as the subtracted portion is still convex. The smaller
component is labeled . Component becomes concave
after subtraction and is decomposed into convex components

and . Components – are not affected by the sub-
traction operation.

4) Computation of Multiple Interference-Free Positions for
a Single Orientation:Computing an optimal interference-free
position requires determining the optimal position in every
convex component of the free space and then choosing the
cheapest among them as the final answer. Often, the new part
in this optimal interference-free position may be unstable
or might render other stack parts unstable. Since a position
in every convex component ( through in Fig. 11) has
already been computed, the interference analysis module of
our stacking planner sorts them in increasing order of cost and
then returns the list. Other modules in the planner search this
list for a position that satisfies stability, grasping and other
user-specified concerns that render the stacking plan feasible.
For a detailed description, please see [2].

Computation of one solution for every convex component in-
creases the chance of finding a stable position. Every face of a
-space obstacle reflects a distinct contact state between the in-

terfering convex pairs [5], [6]. Initially, the free space consists of
only one convex component. The faces of this component repre-
sent the constraints of the floor space and maximum permissible
stack height. When an obstacle is subtracted from a free-space
component, it is decomposed into smaller convex pieces using
the obstacle faces. Hence every face of the free-space com-
ponent represents a contact state or a space constraint. For a
quadratic cost function, such as the one used by our planner, the
optimal position in a free-space component always lies on one of
its faces. Since different free-space components have faces rep-
resenting different contact states. Therefore, a list of positions
drawn from all the convex components, are likely to result in a
different contact state for the new part when added to a stack.
We hope that at least one of the contact states renders the new
part stable.

VII. RESULTS AND DISCUSSION

In this section we first demonstrate the effect of the two
techniques described in Sections IV and V on computing
interference-free configurations. Next we show the result of

(a) (b) (c)

Fig. 14. Test parts. (a) Channel part. (b) Triangle part. (c) Complex part.

using interference-free configuration computation algorithms
in our stacking planner along with other analysis modules that
evaluate stability, stacking plan feasibility, ability to grasp the
part in its final configuration, etc.

We use three test parts. The first part, calledChannel Part,
shown in Fig. 14(a), is the simplest of the parts considered and
has three flanges. Flipping alternate parts in a stack upside down
can produce nested stacks. The second part (calledTriangle
Part) has six flanges [see Fig. 14(b)] and can be repeated in the
same orientation to generate stable yet compact nested stacks.
The last part, calledComplex Part,[see Fig. 14(c)] is a com-
plex part with 79 convex components and hence takes more
time to analyze. We use this part to show that the benefits of the
speed-up techniques, especially the one described in Section V,
increase significantly as the part becomes more complex.

A. Interference-Free Configuration Computation

In this section we show the effect of-space obstacle compu-
tation speed-up techniques from Sections IV and V on the com-
putation of a near-optimal interference-free configuration for a
test part when added to an existing stack. Three test parts are
considered. The examples in this section involve add a new part
to an existing column stack. The optimal configuration mini-
mizes the Euclidean distance from a user-specified desired po-
sition for the part to be added to the stack. Positionplaces
the new part c.g. at centroid of the faces or edge/face combina-
tion that supports the whole stack. For example, the stack base
in Fig. 15(b) is the large base face of Part 1. For all the test
parts, the stack orientation is chosen randomly and the initial
new part orientation is chosen as 0. The only constraints that
are enforced are that the part position should lie inside a user
provided set of positions [ from (2)] and there should be no
interference with other parts in the stack. These results might be
of interest to people interested in generating-space obstacles
for any application in four-dimensional -space.
One area where such-space obstacles are useful is in path plan-
ning, in a workspace with polyhedral obstacles, for a 3-D poly-
hedral mobile robot with three degrees of freedom: .
The -space obstacle in -space can be obtained by
first computing the -space obstacle in -space
and then intersecting it with the plane.

1) Implementation:We have implemented the two-stage
procedure from Section V-C using C++ on a PC with a
266-MHz Pentium Pro processor. The discretization step
(see Section V-C) is chosen as 1. RAPID library [4] is used for
interference detection,qhull library [7] is used for convex hull
computation, and ACIS geometric kernel1 is used to model the
parts and the-space obstacles. Triangulating all the concave

1Refer to http://www.spatial.com for Acis Geometric Modeling Library.
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(a) (b) (c)

(d) (e)

(f) (g)

Fig. 15. Addition of a new part to an existing three-part stack for a
channel part. (a) New part. (b) Three-part stack. (c) Initial configuration.
(d) Intermediate configuration #1. (e) Intermediate configuration #2. (f)
Intermediate configuration #3. (g) Final configuration.

faces of a zero sheet thickness model of the part and extruding
the resulting polygons by the sheet metal thickness generate
convex components of the sheet metal part.

2) Set of Permissible Positions: For channel and triangle
parts, the set of permissible positions is a subset of 3-D

-space and for Part #3, the set of allowable posi-
tions is a subset of 2-D -space. A 3-D position set
is useful for parts that have a large number of stable orientations
(Parts #1 and #2) and the 2-D position setis preferred for
parts like Complex Part that have few stable orientations. In
the 2-D case, the position parameterfor a new part can be
chosen by identifying a set of edges or faces of parts already
in the stack that support the new part rendering it stable. For
the 3-D case, position parameter for the new partis chosen
such that the part is placed at the bottom of the stack. Please
note that the user does not specify orientation and the planner
(in Section VII-A alone) chooses a discrete orientation that
enables it to position (with no interference) the new part as
close as possible to the desired position.

3) Interference-Free Configurations for the Test
Parts: Addition of a new part to an existing stack is shown for
the channel part in Fig. 15. The new part to be added is shown in
Fig. 15(a) and the three-part stack it has to be added to is shown
in Fig. 15(b). The desired position for the new part [shown
in Fig. 15(c)] is such that it lies at the bottom of the stack
and its c.g. lies at the centroid of the base face of Part 1. The

(a) (b)

(c) (d)

(e) (f)

Fig. 16. Addition of a new part to an existing three-part stack for triangle part.
(a) New part. (b) Three-part stack. (c) Initial configuration. (d) Intermediate
configuration #1. (e) Intermediate configuration #2. (f) Final configuration.

initial orientation for the new part is 0. This orientation is not
valid as the new part interferes with parts already in the stack.
Hence, the planner tries out different discrete orientations and
for each discrete orientation, it computes the distance the new
part has to move to avoid interference between the interference
pairs (see Section V-A3) it encountered at position. For
the orientation shown in Fig. 15(d), the new part is almost
overlapping with Part 1. In this configuration,2 the new part
still interferes with parts 1 and 2, but the interference pairs are
different. The algorithm moves the part up to avoid interference
first with parts 1 and 2, and then finally with part 3. The final
part configuration is such that the parts are nested.

The algorithm works similarly for Triangle Part as shown in
Fig. 16 to produce a nested stack shown in Fig. 16(f). This is
one of the main advantages of using-space representation. It
helps us obtain nested stacks without explicitly looking for part
features conducive to nesting. For the examples in this section,
the initial stack orientation is chosen at random. Hence, we need
the discretization step to be small enough such that at least
one orientation that facilitates nesting is not considered. The ex-
trapolation algorithm described in Section IV helps us analyze
-space information for a large number of candidate orientations

without having to construct the-space obstacles for every ori-
entation from scratch.

While the benefits of the extrapolation technique from Sec-
tion IV apply uniformly to all parts irrespective of their com-
plexity, the benefits of the partial-space obstacle based tech-
nique from Section V are more pronounced for stacks with com-

2Only a few candidate configurations considered by the two-stage procedure
from Section V-C are shown for the sake of brevity as�� = 1 . This is true
for the stacks shown for triangle and complex parts in Section VII-A.
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(a) (b)

(c) (d)

Fig. 17. Computing an interference-free configuration for a new complex part
with respect to one stationary part. (a) Initial configuration. (b) Intermediate
configuration #1. (c) Intermediate configuration #2. (d) Final configuration.

plex parts. This even applies to stacks with a small number of
parts. We show this by presenting the results for a two-part
“stack” for Complex Part from Fig. 14(c). Stacks with larger
number of parts for Complex Part are dealt with in the next
section. The set of permissible positionsfor this example is
two-dimensional and is a convex region in the plane.

Fig. 17 shows the computation of a near-optimal interfer-
ence-free configuration for Complex Part. The initial, final and
a couple of intermediate configurations are shown in Fig. 17(a),
(d), (b), and (c), respectively. This part poses two difficulties:

1) It has a large number of convex components.
2) Choosing a near-optimal configuration sometimes re-

quires the accommodation of protruding flanges in holes.
Partial construction of -space obstacles for even this

two-part case significantly speeds up interference-free configu-
ration computation. The reason is that only a few interference
pairs are considered for the expensive step of-space obstacle
computation. Searching in-space automatically enables us
to accommodate flanges in holes without explicitly looking
for such features. However, the final configuration in Fig. 17
might not be amenable to automated stacking as the flange is
very close to the edge of the hole. Robot positioning error can
cause parts to get tangled. One way of avoiding tangle is to
prescribe an upper bound on robot positioning error and the
final part configuration chosen should be at least that far from
the -space obstacle. This has already been implemented in the
planner (see Section VI-A-2 for details).

Fig. 8 shows the convex decomposition of the part into 79
convex components. One problem with the present triangula-
tion scheme is evident from part configurations in Fig. 17(c)
and (d). In the configuration in Fig. 17(c), there is a small tri-
angular component of the moving part that is interfering with a
component of the stationary part. An additional step is required
to compute the small translation to the interference- free config-
uration in Fig. 17(d). Such steps can be avoided by combining
narrow and small triangles with neighboring triangles to create
larger convex components.

4) Computation Times:Table I3 shows the time spent by
RAPID for interference detection, time spent for-space ob-
stacle construction from scratch, and time spent for-space ex-
trapolation. The time taken per function call is also presented for
each of these tasks. We can see from Table I that the time taken
per function call for extrapolation of a-space obstacle is an
order of magnitude less than the time taken per function call to
compute an obstacle from scratch. We can also see that the total
time spent for extrapolation is larger than the total time spent in
obstacle construction. This indicates that the constant topology
orientation intervals (see Section IV-B) are large enough for the
extrapolation function to be valid for a large number of candi-
date orientations. This shows us that the extrapolation technique
described in Section IV is faster than construction from scratch
and it is valid for many candidate orientations.

As explained in Section V-A3, we use interference detection
to avoid unnecessary computation of-space obstacles. This is
justified by the fact that time taken per call for interference de-
tection is about an order of magnitude less than the time it takes
to construct the-space obstacle from scratch. One interesting
observation from Table I is that the time taken per function call
for interference detection,-space obstacle construction, or ex-
trapolation is the same for all the three test parts, in spite of
the varying degree of complexity. This is the result of convex
decomposition of the parts. Hence, the three routines work on
triangles or simple convex shapes most of the time. As part com-
plexity increases, the number of times these routines are called
increases. The total time taken for the complex part is only twice
as large as the time taken for the other two parts because of
two reasons. The first reason is that there is only one stationary
part in the stack and the set of permissible positions is 2-D. The
second reason is that the algorithm was lucky enough to find an
orientation that enabled it to position the new part close to the
desired position by accommodating one of the tall flanges in
a hole [see Fig. 17(d)]. This prevented the algorithm from con-
sidering candidate orientations where such accommodation was
not possible and hence the new part had to be moved far from
the desired position.

Table II shows the effect of partial-space obstacle com-
putation on the performance of the two-stage approach from
Section V-C. In column 3, the table shows the number of in-
terference pairs (see Section V-A3) that have to be analyzed
to compute the complete-space obstacle for the new part for
every candidate orientation considered. In column 4, the table
shows the number of interference pairs actually considered by
the planner for -space obstacle construction or extrapolation.
As the part complexity increases, the percentage of convex com-
ponents considered drops from 66% through 26% all the way to
less than 0.1%. We can see that there are significant advantages
to using partial computation of-space obstacles for polyhedral
sheet metal parts.

B. Interference Analysis by Stacking Planner

In this section we show the stacking plans generated by our
planner for the three test parts from Fig. 14. The number of

3The total computation time includes computation time for procedures other
than interference detection andc-space obstacle computation. Hence, the three
computation times do not add up to give total computation time.
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TABLE I
COMPUTATION TIMES FOR INTERFERENCEDETECTION AND C-SPACE OBSTACLE CONSTRUCTION AND EXTRAPOLATION FOR

TWO-STAGE APPROACH INSECTION V-C

TABLE II
NUMBER OF INTERFERENCEPAIRS EVALUATED TO COMPUTE

INTERFERENCE-FREE CONFIGURATION FORTWO-STAGE APPROACHFROM

SECTION V-C

parts, from (1) is 15. For each test part, we have shown the
stacking plan for three values of the parameterfrom (1).
When , part c.g. height is penalized much more than
floor space utilization and the reverse is true for . For

, the two cost components are comparable. The planner
chooses candidate orientations that can be grasped using suc-
tion cups and are promising candidates from stability point of
view. For each candidate orientation, the planner uses procedure
from Section V-A to compute a list of interference-free posi-
tions sorted in increasing order of the cost computed using (1).
These candidate positions are then evaluated for stability and
stacking plan feasibility. The parts are separated in the plane
by at least 5 mm to account for robot positioning error. The
only difference in implementation between this section and Sec-
tion VII-A is that the free space is decomposed into convex poly-
hedral components, each of which is represented by a set of
linear inequalities. The-space obstacles are also represented
using linear inequalities. This eases the task of accounting for
robot positioning errors. Further, this increases speed and ro-
bustness of subtraction of a-space obstacle from the set of per-
missible positions.

The stacking plans for the three values of parameter w are
shown in Fig. 18. For , the preferred orientation is
the one with the largest face acting as the base. Nesting occurs
once floor space used becomes large enough for space utiliza-
tion cost to become comparable with the cost of increasing part
c.g. Nesting is also preferred by the planner as it strives to keep
the stack compact using the two stage approach described in
Section V-B. As increases, the preferred orientation changes
to reduce space utilization. Most of the parts rest on the smaller
flange. All the parts are in this sideward orientation for .
Nesting does not occur in this orientation for as nested
parts cannot be added to the stack from the top using pure trans-
lation. All the part orientations chosen present a horizontal face
for grasping using suction cups. While the interference anal-
ysis module supplies a list of promising configurations, stability,
grasping, and plan feasibility concerns dominate the choice of
the final part configurations. Therefore, it is useful to have al-
gorithms that can generate multiple interference-free configura-
tions.

Fig. 18. Stacking plans for channel part.

The stacking plans for three values offor Triangle Part are
shown in Fig. 19. The planner shows a strong preference for
nesting. For this part, nesting is preferred for low values of
because of the small increase in height of part c.g. when it is
added to the stack. For large values of, nesting is preferred be-
cause of the savings in floor space. The only effect of increasing

is the reduction from two nested stacks to one nested stack.
This occurs because the planner is encouraged by the floor space
utilization component of the cost function from (1) to move all
parts as close to the floor space center as possible.
The orientation obtained by flipping the part upside down from
the orientation shown in Fig. 19 results in a lower-coordinate
for the c.g. with the same floor space utilization. However, this
upside down orientation is rejected because it is unstable when
placed on the floor. Often for sheet metal parts, the orientation
that minimizes the c.g. height may not be stable when placed on
the floor or may not be supported contacts with other parts to
render it stable. This justifies the presence of a stability check
for all candidate configurations although the cost function has a
component that is a measure of stability.

Fig. 20 shows the stacking plans generated for Complex Part.
The tall flanges make this part a hard one to stack. For ,
most parts are placed on the floor with the largest face acting
as a base face. Only a few parts are placed on top of the bottom
layer of parts. This is due to the difficulty in accommodating
the tall flanges while observing the separation distance required
to account for robot positioning error. The planner is able to do
this for only one part. For higher values of, this orientation is
not preferred as floor space is expensive and it is not possible
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(a)

(b)

(c)

Fig. 19. Stacking plans for triangle part. (a)w = 0:1: (b) w = 0:5: (c)
w = 0:9:

to stack parts in a column fashion because of the tall flanges.
One drawback of the current cost function is reflected by the
stacking plans for 0.5 and 0.9. The planner builds the stack
as a set of columns. A stack with staggered parts is more stable
than a set of columns.

C. Limitations

Our convex decomposition scheme triangulates concave
faces and therefore produces an unnecessary large number of
convex components. A more efficient convex decomposition
scheme would help further speed up interference-free config-
uration computation. Currently we do not use part symmetry
to prune out candidate orientations. This again would help
us compute interference-free configurations faster without
sacrificing solution quality. Our cost function computes floor
space utilization for the parts individually and just sums them
up. A cost function that looks at the properties of the stack as

(a)

(b) (c)

Fig. 20. Stacking plans for the complex part. (a)w = 0:1: (b) w = 0:5: (c)
w = 0:9:

a whole might produce stacking plans that are closer to what
a human would choose.

VIII. PREVIOUS WORK

Configuration space (-space) based approaches have been
popular with researchers working in robot path planning, as-
sembly planning, and mechanism design. A-space is useful
for abstracting away the geometry of the object of interest and
focus on the property of interest, e.g., geometric interference
and kinematic behavior, but it is expensive to compute. In this
section, we discuss the application of-space based techniques
and what researchers have done to skirt around the problem of
excessive computation time required for-space obstacles.

The generation of a stacking plan involves determining inter-
ference-free configurations for all parts in a stack. We use an
incremental approach to stacking. When a new part is added to
an existing stack, interference-free configuration determination
is performed in the-space of the new part. Parts already in the
stack are considered stationary obstacles. The desired configu-
ration for the new part is one that minimizes a user specified
cost function. This configuration may not be realizable because
of interference with parts in the stack. Hence, it is required to
compute an interference-free configuration that is as close as
possible to the desired configuration. This is an instance of the
findspaceproblem defined by [5].

Reference [5] addressesfindspaceand findpath problems.
Findspace problem is the interference-free configuration
determination for an object in a obstacle filled environment.
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Findpath problem involves determining a interference-free
path from a start to a goal configuration. Path planning in

-space is performed by computing slices that are
unions of -space obstacles in for small orientations.
The slices are a conservative approximation of the real-space
obstacle and include all configurations leading to interference
in a small orientation range.

A. Configuration Space and Motion Planning

-space based planning has been used extensively for mo-
tion planning. Motion planning might involve computing an in-
terference-free path for a robot or for a part to be added to an
existing sub-assembly. If no such path exists, the planner should
declare failure. The dimensionality of-space is the number of
degrees of freedom of the robot. For motion planning, the start
and goal configurations are known beforehand. The challenge is
computing a path that lies completely in free space for the robot
or the part to be assembled. Complexity of computing a feasible
path, irrespective of its optimality, has been shown to be expo-
nential in the number of degrees of freedom by [8]. Hence, the
focus in motion planning is on determination of the connectivity
of the free space, not the more difficult problem of determina-
tion of topological and geometric details.

Computation of the stacking configuration involves deter-
mination of the goal configurations for all stacked parts. For
stacking, we are interested in near-optimal configurations that
minimize distance from the desired configuration. Hence, we
need topological and geometric information along with con-
nectivity information. Once the stacking plan is generated, as-
sembly planning algorithms [9], [10] can be used to determine
an interference-free path for the stack parts from a start config-
uration to their final configuration. Alternately, robot path plan-
ning algorithms can determine an interference-free path for a
robot as it builds the part stack.

References [11]–[13] study path planning for robots in two
and higher dimensions. The first paper performs path planning
in -space. The emphasis is on studying what hap-
pens to the connectivity of free space as the orientation changes.
Free space connectivity information is essential to ensure that no
collision occurs with an obstacle along the path.

Reference [14] presents a search algorithm for motion plan-
ning with six degrees of freedom. The planner is complete with
a resolution. The emphasis is on finding a path in reasonable
computational time. No attempt is made to optimize the path.
Moves suggested by local experts are then implemented using
a combination of pure translations and pure rotations. Metrics
are provided to compute distance between two configurations
in -space. By using stability enhancing heuristics we have
reduced the dimensionality of the search-space from six
dimensional -space to four dimensional

-space. The metric used by Donald might be
useful if we want to include orientation also in the quadratic
cost function used by the prototype planner.

Reference [15] performs path planning for an de-
gree-of-freedom manipulator by representing the-space
obstacles using dimensional slices. These slices are
represented using slices in dimensions and so on. No
attempt is made to characterize the-space obstacle surfaces.

The approximation is conservative and hence some feasible
paths may not be detected. One advantage is that the free space
is not divided into arbitrary subdivisions such as introduced by
Donald. Instead the divisions represent the coherence of the
free space. A feasible path is determined by looking at only
a portion of the -space. We are also able to compute good
interference-free configurations by looking at a small portion
of the -space obstacle and are able to construct exact-space
obstacles in -space.

References [16]–[18] use probabilistic methods to perform
path planning. Kavrakiet al.spend a lot of time building up in-
formation about the configuration space of a robot. Then, mul-
tiple queries for path from a given start to a given goal can
be determined very fast. Hsuet al. research a assembly/disas-
sembly problem where only a few queries may be made after
building a portion of the-space obstacle information. This ap-
proach is successful in finding paths through narrow channels
for motion planning and assembly planning problems. How-
ever, no information is available about the geometric structure
of the -space obstacles. Hence, computing near-optimal inter-
ference-free configurations is not possible.

B. Configuration Space and Mechanism Design and Analysis

Configuration space is used in mechanism design for mod-
eling, simulation, tolerance analysis and proposing alternative
designs. References [19] and [20] survey some of the important
work done in this area.

Mechanism modeling and classification require the com-
plete characterization of one component of free space and
its boundary. The component studied is the one containing
the initial mechanism configuration. Mechanism simulation
requires rapid incremental generation of-space information.
Joskowicz and Sacks present an algorithm for kinematic
modeling of mechanisms [21]. Stacking requires the complete
characterization of components of free space containing
configurations positioning a part on the floor space or above
it. We generate incremental-space information to guide the
search for an interference-free configuration, but often consider
multiple free space components.

References [21] and [22] present a kinematic analysis al-
gorithm for mechanisms containing higher pairs, such as door
locks, gearboxes, and transmissions. The mechanism is decom-
posed into subassemblies. The behavior is described as a contact
curve in 2D -space of the subassembly. The curve partitions
the -space obstacle from the free region. The behavior of the
mechanism is described as a composition of the 2D-spaces of
the constituent assemblies. The mechanism-space is divided
into regions that characterize its operating modes. An operating
mode is defined by the contacts that exist between members of
the assemblies. The dimensionality of the-space of a mecha-
nism with assemblies, each with 2 degrees of freedom, is.
However, the mechanism behavior has been captured by just
studying two-dimensional -spaces. The dimensionality of
-space of a stack with parts is . We determine near-optimal

stacking configurations by analyzing3-dimensional -spaces.
Three of the parameters are orientations and are fixed using sta-
bility heuristics. This is achieved by incrementally adding parts
to the stack.
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References [23] and [24] use the-space regions described
above for kinematic simulation of mechanisms. The program
takes a driving motion, internal forces, and time allotment as
additional inputs and generates animation and an interpretation
of the ensuing behavior. The focus is on rapid generation of par-
tial -spaces that are traversed by the mechanism in the course
of the simulation. The user-provided driving motions determine
which regions of the -space are computed. For the stacking
problem, the -space regions to be computed are determined by
checking for collision between convex components of the sheet
metal parts using fast interference detection tools [4].

Mechanism design using-space based techniques is more
difficult than mechanism modeling and simulation. This is be-
cause transformation from a physical mechanism to its-space
is unique. However, the inverse transformation is not unique as
many mechanisms with multiple parameter values can achieve
the same kinematic behavior. Joskowicz and Sacks [19] have
worked on interactive parametric design of mechanisms. They
avoid the uniqueness problem by first modeling the-space be-
havior of a given mechanism and modifying its parameters by
small amounts to obtain a desired change in the-space curve.
Stahovichet al. [25] use qualitative -space curves to propose
alternate mechanisms to achieve the same kinematic behavior
as a user-specified mechanism. The qualitative-space curves
approximate the real-space curves and limit the number of de-
signs to be considered while transforming back from-space.

References [26] and [27] present an algorithm for worst-case
and statistical kinematic tolerance analysis of mechanisms with
parametric part tolerances. The kinematic variations are mod-
eled as parametric surfaces in the mechanism-space. -space
based tolerance analysis requires dividing the-space into free
zone, interference zone, and contact zone. In the free zone, there
is no interference for all mechanism parameter values lying in
the tolerance zone. Similarly, in the interference zone, there is
interference for all mechanism parameter values. In the con-
tact zone, interference exists only for certain parameter values.
The inputs to the algorithm are the nominal motion path, the
pair-wise contact zones of the interacting parts, and the param-
eter variations. The actual motion path is approximated by a
sequence of-space points. The output is the kinematic varia-
tion of each -space coordinate at each path point. Currently, we
account only for robot positioning errors while computing in-
terference-free configurations. The stacking planner can be ex-
tended to use this representation to account for part tolerances
also. Once the part configurations in a stack are determined, the
effect of variation around the nominal configuration on interfer-
ence and stability can be modeled.

C. Configuration Space Obstacle Computation

The success of configuration space based techniques for
the applications discussed above hinges on computation of
-space obstacles in reasonable time. The particular application

determines what is reasonable time. Some applications require
rapid but approximate descriptions of the-space. Others
require an accurate description that can be computed off-line.
Since our work deals with polyhedral parts, we will primarily
discuss -space obstacle computation for polyhedral objects.

For convex polyhedra, computation of a-space obstacle in
-space and -space can be performed in

and time respectively [5], where is the total
number of vertices of the polyhedrons. One reason computation
in these spaces is easy is that-space obstacle corresponding to
a polyhedron in the -space of another polyhedron
is polyhedral. This is not true once orientations are also con-
sidered. Hence obtaining a closed form description is far more
difficult in -space dealing with one or more of the parameters

, , and .
Reference [5] provides a conservative description of the

-space obstacle in -space. The obstacle is repre-
sented as a set of slices. Each slice is a region in -space
representing union of positions resulting in interference for
any orientation in the interval corresponding to that slice.
We use stability enhancing heuristics to determine promising
values of parameters and . This reduces the-space to
be searched to four dimensional -space. We
use Lozano-Perez’s algorithm to compute-space obstacles
in -space. Further, we have an algorithm that
characterizes the effect on the obstacle of rotating one of the
objects about an axis. The input to the algorithm is the axis of
rotation and the output is the orientation intervals within which
the -space obstacle topology stays the same. Within each
interval the obstacle geometry for one orientation is computed.
This information can be used to compute the obstacle for other
orientations in the same interval. Therefore, by specifying the
rotation axis as -axis (see Fig. 4), we can obtain a closed form
description of the obstacle in -space.

References [11] and [13] study the effect of varying
on the -space obstacle in -space and

divide into noncritical and critical regions. In a
noncritical region, the topology of the-space obstacle stays
the same. They also study the effect on a-space obstacle in
six-dimensional configuration space when a polyhedron is
moving in a three-dimensional world with polyhedral obstacles.
The significance of critical orientations is explained, but no
algorithm is presented to compute the critical orientations.

Avnaim and Boissonnat [28] present a polynomial time algo-
rithm for construction of configuration space obstacles for one
set of planar polygons with respect to another set of planar poly-
gons. In their work, a closed form description of the obstacle
boundary is formulated as a transformation from a-region.
The intervals within which the region is described by a con-
stant analytic function is analogous to the orientation interval
within which the topology of the obstacle in -space
stays the same. References [29] and [30] investigate the effect of
change in on the -space obstacle in -space. The algo-
rithm represents-space obstacles in -space as set of
slices, each a region in -space. It discretizes the-space
into intervals of equivalent slices separated by critical slices. In
Chapter 4, we compute critical orientation ranges within which
the -space obstacle topology in -space remains
constant. The critical slices are analogous to these critical ori-
entation ranges.

The algorithm developed by [6], [31] uses facet intersections
to construct the obstacles in configuration space. Given two
polygons as input, the algorithm computes the-space obstacle
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in -space. The projection of the obstacle in a
user-supplied direction is generated without constructing the
actual obstacle. The representation includes a complete metric
and topological description. This information is required to
enumerate all the possible contact states between the polygons.
This algorithm is polynomial in the number of vertices of the
two polygons. There is however no straightforward way to
extend this approach to higher dimensions. Information about
contact states is useful for studying tangling of sheet metal
parts. Parts are considered tangled when flanges of one part
are jammed in holes or slots of another part and cannot be
handled by a robot. A conservative method to identify tangle
prone configurations is to check if small perturbations from a
configuration lead to a change in the contact state.

D. Configuration Space Based Analysis for Sheet Metal Parts

Zussman and Horsch [32] present a method for extracting a
bent part out of the press brake without colliding with the ma-
chine. The search for interference-free configurations is per-
formed in three-dimensional discretized configuration space.
The planning process is accelerated by identifying critical part
profiles which are closest to the punch and die and hence, most
likely to collide with the machine. The profiles are identified
after decomposing the part into convex parts. They use a fast
algorithm developed by [33] for computing distance between
convex objects in three-dimensional space. An extension of this
work could be used to perform path planning for the stacking
robot once the stacking plan has been generated.

IX. CONCLUSION AND FUTURE WORK

We have discussed two techniques to speed up the expensive
step of -space obstacle computation.

1) The first technique identifies orientation intervals within
which topology of face-edge-vertex graph of a-space
obstacle topology for a pair of convex solids stays con-
stant. Within this orientation interval,-space obstacle ge-
ometry for one orientation can be extrapolated to obtain
obstacle geometry for another orientation. In our experi-
ments, extrapolation takes about 12% of the time it takes
to compute an obstacle from scratch.

2) The second technique enables us to compute interfer-
ence-free configurations for a pair of concave solids by
partially constructing -space obstacle geometry. This
method works especially well for polyhedral sheet metal
parts with a large base face and flanges. We have seen that
for a sheet metal part with 79 convex components, less
than 0.1% of the potential convex component pairs were
evaluated to obtain an interference-free configuration.

We have used -space based algorithms for interference
analysis by a stacking planner. For every candidate orientation,
the interference analysis module provides a list of interfer-
ence-free positions sorted in increasing order of the cost. This
list is searched for a position that satisfies stability, grasping
and stacking plan feasibility concerns.

We need a method more efficient than triangulation for de-
composing concave flanges of a sheet metal part. This would
reduce the number of interference pairs we need to process to

compute interference-free positions. One way to achieve fewer
convex components is to partition the flange along lines that are
parallel to edges of the flange and edges of the concavities and
holes of the flange.

We also need a cost function that captures properties of the
stack as a whole. At the same time, the cost function should be
quadratic to enable use of closed-form quadratic optimization
methods to compute interference-free positions for a candidate
orientation. One way to achieve this objective is to have a stack
cost function that uses the bounding box of the stack to mea-
sure floor space utilization and stack c.g. as a stability measure.
The planner can be run for different values offor the cost
function currently used. The plan which gives the lowest cost as
calculated by the stack cost function is then chosen as the final
stacking plan.

Currently, the planner sometime builds stacks as a set of
columns. The cost function should have a term that encourages
the more stable alternative of staggering parts to increase the
number of parts with which a part is in contact.

APPENDIX A
CONFIGURATION SPACE TERMINOLOGY

The configuration parameters (see
Fig. 4) of a rigid body define a six-dimensionalconfiguration
space( -space). These six parameters describe the transforma-
tion from a global coordinate frame to a local coordinate frame
attached to the rigid body. Every point in this space refers to a
certain configuration of the rigid body in the real world.

The set of configurations of a rigid bodythat result in inter-
ference with another rigid body is called a -space obstacle
of with respect to denoted . Two bodies are con-
sidered to interfere if the volume of their intersection is nonzero.
Hence bodies touching each other are not said to interfere. The
set of configurations of such that there is no interference be-
tween and is called thefree spacedenoted . For
any configuration of lying in the interior of , there
is penetration between the two bodies. For any configuration of

lying in the interior of , and are not in contact.
For any configuration on the boundary separating and

, and are touching each other.
For example in Fig. 21, three positions of polygonrelative

to polygon are shown on the left hand side and the-space
obstacle in -space is shown on the right hand
side. Position 1 lies on the boundary between the obstacle and
free space, position 2 lies in the interior of the obstacle, and
position 3 lies in the interior of the free space, i.e., outside the
-space obstacle.

APPENDIX B
CONSTRUCTION OF -SPACEOBSTACLE IN -SPACE

Consider the pair of convex polygonsand in Fig. 22.
is stationary and is allowed to translate, but not rotate. The
polygons are shown on the left-hand side in world coordinates
and the -space obstacle corresponding toin -space
is shown on the right hand side. The following discussion also
applies to obstacles in -space. The-space obstacle

can be expressed as the Minkowski sum ofand
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Fig. 21. Two polygons and their correspondingc-space obstacle.

Fig. 22. Construction ofc-space obstacleC(A; B).

reflected about the origin of world coordinate frame in Fig. 22.
Reference [5] shows that is convex and can be con-
structed using vertices of and . The -space obstacle is the
convex hull of the points obtained by the pair-wise subtraction
of vertices of from vertices of . Hence, we have the fol-
lowing equation:

(12)

where , are vertices of and ,
are vertices of . This computation can be

performed in [3] time where is
the number of vertices of , and is the number of vertices
of .

APPENDIX C
COMPUTATION OF CRITICAL ORIENTATION

Starting from (5), we show how to compute the critical ori-
entation for a single point from Appendix B with respect to
a face of the convex-space obstacle. is defined in (12). Let

, , and be three consecutive vertices of the convex face
of interest. Since, these vertices are three of the extreme (black)
points from Fig. 22, they are also formed by pair-wise subtrac-
tion of vertices , , and of polygon from vertices

, , and of polygon respectively. Using (4), we can
define the face normal from (5) as

(13)

where is the rotation matrix from (4). We can then expand
(5) as follows:

(14)

The rotation matrix is given by the following equation:

(15)

Using the above equation and the relationships

and

we can simplify (14) to the following form:

(16)

where , , and are constants. Solving this quadratic equa-
tion and taking the inverse tangent gives us the critical angle for
one interior point for one face of the convex hull.
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