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Abstract

Personal robotics applications require autonomous mobile

robot navigation methods that are safe, robust, and inexpen-

sive. Most of the previous techniques proposed do not meet

these competing goals. In this paper, we describe a method

for navigation in a known indoor environment, such as a

home or oÆce, that requires only inexpensive range sen-

sors. Our framework includes a high-level planner which

integrates and coordinates path planning and localization

modules with the aid of a module for computing regions

which are expected, with high probability, to contain the

robot at any given time. The localization method is based

on simple geometric properties of the environment which

are computed during a preprocessing stage. The roadmap-

based path planner enables one to select routes, and sub-

goals along those routes, that will facilitate localization and

other optimization criteria. In addition, our framework

enables one to quickly plan new routes, dynamically, based

on the current position as computed by intermediate local-

ization operations. We present simulation and hardware

experimental results that illustrate the practicality and po-

tential of our approach.

1 Introduction

There is an increasing number of potential applications
for autonomous mobile robots in indoor environments.
Personal robotics applications must be safe, robust,
and inexpensive.

Unlikemanipulator robotics in manymanufacturing
applications, mobile robotics requires a global under-
standing of the environment and the ability to dynam-
ically plan in it [8]. There are some fundamental issues
that must be addressed to achieve autonomous mobile
robot navigation. First, a path planner is needed to
select a route for the robot to follow (see, e.g., [12]).
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Second, since unavoidable odometer errors, e.g., due
to wheel slippage, render it impossible for any mo-
bile robot to precisely follow a planned trajectory,
localization techniques are needed to precisely deter-
mine the robot's position and orientation (see, e.g.,
[3, 4, 6, 5, 9, 15, 17, 18]).

In this paper, we describe the design and implemen-
tation of a framework for autonomous mobile robot
navigation in a known indoor environment that re-
quires only inexpensive range sensors. Our approach:

� integrates and coordinates the path planning and
localization modules with the aid of a module for
computing uncertainty ellipses.

� selects routes, and sub-goals along those routes,
that facilitate localization and optimization of
other criteria such as travel time or safety.

� dynamically re-plans routes quickly and easily
from the current con�guration

Our framework is based on a roadmap-based path
planner [12] and our recently proposed localization
strategy [13], which requires only inexpensive range
sensors. An advantage of roadmap planning methods
is that the presence of multiple potential paths in the
roadmap provides support for on-line re-planning of
the path, and enables one to select routes which op-
timize various criteria. Our localizer assumes that a
description of the environment is available a priori,
and that the portion of the workspace relevant to nav-
igation can be modeled with polygonal obstacles.

2 Global Navigation

The navigator takes as input start and goal con�g-
urations of the mobile robot, and the known environ-
ment information. It calls on a path planner to plan a
path, and then determines a trajectory. Due to impre-
cise control and odometer error, the mobile robot can-
not precisely follow the planned trajectory. Thus, sev-
eral iterations of this process might be required before

ralph
Proceedings of the 2001 IEEE 
International Conference on Robotics & Automation
Seoul, Korea 匀 May 21-26, 2001

ralph
0-7803-6475-9/01/$10.00 © 2001 IEEE

min80
3789



the robot attains the goal con�guration. Before each
iteration, a localization will be performed to precisely
determine the robot's current con�guration, which will
be the new start con�guration by the path planner.

In many cases the path output by the path planner
will be modi�ed to facilitate the subsequent localiza-
tion step and also to ensure the robot follows a valid
path (e.g., to ensure that no collisions will occur due
to imprecise control or odometer error). In particular,
some upper bound on the positioning error the robot
will accumulate as it travels will be known based on
the speci�cations of the mobile robot. These bounds
will be used to determine a region that is expected to
contain the robot as it travels { these regions are of-
ten called uncertainty regions (ellipses in our case). To
ensure that no collision will occur, the navigator must
plan a trajectory in which the uncertainty region does
not intersect any obstacles. In addition, if the localiza-
tion algorithm used has any special requirements (as
does the method we employ), then the navigator must
also be sure that the uncertainty regions on the tra-
jectory could not place the robot in a situation where
localization is not possible.

Thus, moving the mobile robot from a given start

to a goal con�guration is an iterative process that is
governed by a high-level navigator which synthesizes
the current trajectory to be given to the robot from
information provided by path planning, localization,
and uncertainty/error calculation modules. A pseudo-
code description of the process is shown in Figure 1.

Navigator(start, goal)
1. while goal is not reached f
2. �nd path from start to goal

3. compute uncertainty regions along path
4. determine subgoal (`safe' pre�x of path)
5. compute trajectory from start to subgoal

6. drive robot to subgoal and stop
7. robot senses environment
8. localize robot using sensor input
9. set start to current con�guration
10. g

Figure 1: Pseudo-code for Global Navigator

The main intelligence required by the navigator is in
Step 4, the determination of an appropriate subgoal
along the path from the current position to the de-
sired �nal goal. This requires an understanding of
the capabilities and requirements of the localization
method. For example, if there are certain situations
in which localization would not be possible, then the
global navigator must ensure that they do not occur.

In addition, the navigator is responsible for per-
forming any global optimization of the selected route.
For example, if sensing and localization is a time con-
suming operation, and speed is a concern, then the

navigator must consider both the length of the path
and the number of localization operations required
when selecting a route. In this case, it will aid the
navigator's task if the path planning module is capa-
ble of providing multiple paths from the start to the
goal. For this reason, we favor roadmap path planning
algorithms [12], which encode multiple representative
feasible paths.

3 Component Algorithms

In this section, we describe the path planning, local-
ization, and uncertainty/error computation modules
used in our system. We assume that the portion of the
workspace relevant for navigation can be considered to
be planar, and that obstacles can be modeled by sim-
ple polygons. Since our goal is to design a navigation
system for inexpensive robots, we have selected a lo-
calization method that requires only range (distance)
data, which can be obtained by low cost sensors.

3.1 Roadmap Path Planning

Figure 2: Roadmap and Uncertainty Region

Roadmap motion planning methods [12] construct,
usually during preprocessing, a graph of representa-
tive feasible paths which can later be used to answer
many, varied motion planning queries. In theory, we
can use any roadmap. One attractive option is to use
roadmaps built on the medial axis of the workspace or
C-space [7, 15, 19], which tend to maximize the robot's
clearance from obstacles. While computing the medial
axis in high-dimensional C-spaces can be expensive,
many important applications for mobile robots can be
framed in a planar, polygon environment. In this case,
computation of the medial axis is not prohibitive.

Assuming a roadmap is available, queries are an-
swered by connecting the start and goal con�gura-
tions to the same connected component of the roadmap
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using some `local planner,' and then extracting a path
connecting them using graph search methods. An ex-
ample is shown in Figure 2, where the start and goal

con�gurations are connected to the roadmap nodes b
and f , respectively, and the path extracted is com-
posed of the nodes b; c; d, and f .

3.2 Uncertainty Regions

The count of wheel revolutions provides positional in-
formation relative to the start location. This kind
of measurement is called \dead{reckoning." Since
odometer readings are subject to unavoidable errors,
much work has been done on estimating the position
uncertainty of a dead-reckoning robot [11]. Typically
with this approach, each computed robot position is
surrounded by a characteristic error ellipse which in-
dicates a region of uncertainty for the robot's actual
position [1], i.e., the ellipse denotes a region that will
contain the robot with high probability.

For a straight translational path, the ellipse at the
end of the path can be approximated using two pa-
rameters corresponding to longitudinal and lateral de-
viation and can be visualized as the minor and major
axes of an uncertainty ellipse. The uncertainty region
of a translational path is obtained by taking the inter-
section of the ellipses along the path. (see Figure 2).

3.3 Localization

Many di�erent localization methods have been pro-
posed in the literature (see, e.g., [3, 4, 5, 6, 9, 15,
17, 18]). We have selected a method we developed
that provides fast localization using only range sen-
sor data (i.e., distance measurements) [13]. During
preprocessing, the workspace is partitioned into sec-
tors using simple visibility computations, and a small
identifying label is computed for each sector. The lo-
calizer analyzes the range sensor readings and extracts
characteristic points, which are compared with the pre-
computed sector labels to localize the robot, �rst to a
sector, and then to a particular con�guration within
that sector. This two step process is computation-
ally very simple, and allows precise localization at any
place in the workspace without any landmarks.
Visibility Sectors. Two points p1 and p2 are

visible if p1p2 does not properly intersect any obsta-
cle. The point visibility polygon V (p) is the set of all
points visible from p [16]. A visibility sector si is a
maximal region such that every point p 2 si is visible
from the same set of environment vertices. Thus, the
visibility sectors of the environment are the faces in the
planar subdivision that is obtained by overlaying the
point visibility polygons for all environment vertices
(see Figure 3).

Our visibility sectors are the same constructs called

Figure 3: A point visibility polygon and sectors

visibility cells in [10], where it is shown that given a
simple polygon P , the complexity of the decomposi-
tion is bounded by O(n2r), where n is the number of
vertices of P and r is the number of re
ex vertices.

Sector and Scan Labels. We compute, during
preprocessing, a label for each sector that includes a
component for each vertex and edge of the environ-
ment visible from that sector. Similar labels will be
constructed from the scan data sensed by the mobile
robot. The component for each feature is classi�ed as
one of four types of characteristic points. The local

maxima (M), discontinuity points (D), local minima (m)
and connection point (c).

A sector's label is a string of mark characters (M,
m, D and c), one for each characteristic point, which
appear in the order the characteristic points are seen
in a counter-clockwise scan with an initial orientation
of 0 (i.e., eastern point �rst). The scan label is con-
structed by processing the range sensor readings, also
in counter-clockwise order, as described in the pseudo-
code shown in Figure 4, where R = fr0; r1; : : : ; rN�1g
is the set of N distance readings sorted in angular or-
der, all index arithmetic is done modulo N , and Æ de-
notes string concatenation.

The sector labels and the algorithm for construct-
ing the scan label are minor modi�cations of the those
presented in [13]. In particular, they have been modi-
�ed so that sector boundaries perpendicular to obsta-
cles, such as the segment labeled a in Figure 5, are
not needed. If such boundaries were kept, we would
have adjacent sectors whose labels di�ered only by the
inclusion or exclusion of local minimum characteristic
points. Such points represent internal points on edges
that are not useful for precise localization since they
do not have �xed global coordinates. Therefore, elim-
inating such points from our labels enables us to have
fewer sectors without increasing the complexity of lo-
calization. Thus, for example, the algorithm has been
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Construct Scan Label(R)
1. `R := ;
2. for i := 0 to N
3. if (ri � ri+1 > "T ) then
4. if (ri+1 < ri+2) then `R := `RÆ cDm

5. else `R := `RÆ cD

6. elseif (ri+1 � ri > "T ) then
7. if (ri < ri�1) then `R := `RÆ mDc

8. else `R := `RÆ Dc

9. elseif (ri�1 > ri and ri < ri+1 and

ri�1 � ri < "T ) then
`R := `RÆ m

10. elseif (ri�1 < ri and ri > ri+1 and

ri � ri�1 < "T ) then
`R := `RÆ M

11. endif

12. endfor

Figure 4: Pseudo-code for scan label construction.

modi�ed so that the same scan labels will be computed
from scans collected at A or B in Figure 5.

Figure 5: Ambiguous Sector with Local Minimum

Localization Procedure. First the robot is local-
ized to a particular visibility sector by a cyclic string
matching of the scan label computed from the sensor
reading with a sector label. Next, the exact con�gu-
ration of the robot in that sector is calculated by reg-
istering the scan data with known global coordinates
of characteristic points in that sector. Details of this
process can be found in [13].

It is possible that multiple sectors of the environ-
ment have the same label. Since our localization
method cannot distinguish between such sectors, it is
the global navigator's responsibility to plan the path
and select the relocalization points to that the robot
is never in a situation where the current uncertainty
region intersects two sectors with identical labels.

4 System Implementation

The mobile robot planning and navigation system de-
scribed in this paper has been implemented and sup-

ports both simulated and hardware experiments. The
C++ code includes modules for each of the component
algorithms described in Section 3, and the navigation
process described in Section 2 is implemented in the
main program. The LEDA library [14] was used for
low-level geometric calculations.

The input to the system is: (i) a set of one or more
simple polygons, in global coordinates, representing
the environment, (ii) a roadmap, and (iii) speci�ca-
tions of the mobile robot. In the following, we discuss
some implementation details.

Preprocessing. During preprocessing, the visibil-
ity sectors of the environment, and their labels are
computed using the following algorithm.

Construct Sector and Labels

1. Add the obstacle edges to the sector boundary list.

2. For each pair of the obstacle polygon vertices, identify
spurious edges (de�ned in [10]) and add them.

3. Check intersections of the edges in the boundary list
and generate sector boundary polygons.

4. Obtain center of mass for each sector.

5. Simulate range scan around the center of mass.

6. Obtain sector label using the simulated scan.

7. Compare cyclically if any two of the labels are the
same. If found, store them in a same{label list.

Component Algorithms. Although it would be
desirable to generate the uncertainty regions by com-
pounding the ellipses based on stochastic estimation,
our current implementation uses a simple min-max
based estimation. This results in more conservative
error regions and possibly causes us to invoke the lo-
calization process more frequently than necessary. Our
current system assumes a roadmap will be provided as
input, and uses straight-line local planner [2]. Once
the start and goal are connected to the roadmap,
the shortest path connecting them is extracted using
Dijkstra's algorithm.

The localization algorithm implementation closely
follows the description in [13], subject to the modi�ca-
tions discussed in Section 3.3. One optimization per-
formed in the implementation was to identify a priori,
in pre-processing, a local maximum point M visible in
each sector to be used for localization.

High-level navigation { subgoal identi�cation

and re-planning. After a path is extracted from the
roadmap, the navigator must select a subgoal along
that path as the terminus of the next trajectory com-
mand. The subgoal was selected to both avoid colli-
sion and to ensure that localization would be possible.
Both these criteria were checked using uncertainty el-
lipses. First, the maximal pre�x of the original path
that is guaranteed to be collision-free is found. Next,
the sectors intersecting the last uncertainty ellipse of
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the pruned path are found and their labels are checked
for uniqueness; if non-unique labels are found, the last
path segment is removed and the process is repeated.
The endpoint of the �nal pruned path is the subgoal.

If the �rst node of the path extracted from the
roadmap was very close to the current start position,
then we optimized the path if possible by removing
that node from the planned route. This can be seen
in Figure 6(b).

5 Experimental Results

The environment used for both the simulation and the
hardware experiments is shown in Figure 2; its di-
mension was 50 � 50 inches. The visibility sectors
generated during preprocessing are shown in Figure 3,
where each sector's center of mass is marked by a small
�. This environment has 71 visibility sectors, and it
was found that several sectors have the same cyclic la-
bel. For instance, sector A has the same cyclic label,
mMmMmMmMcDmDcmM, as sectors B, C, D and E.
Simulation Results. In our simulated experi-

ments, the input range scan for the localization algo-
rithm was generated as follows. First, a position and
orientation for the mobile robot was selected at ran-
dom inside the uncertainty ellipse expected to contain
the robot after executing the given trajectory com-
mand, and then a simulated range scan from that point
was generated.

We present two di�erent simulated experiments.
The �rst experiment (Figure 6) illustrates how a dif-
ferent route is selected when re-planning after a local-
ization operation. The second experiment (Figure 7)
is presented to enable comparison to an identical ex-
periment presented in Section 5 conducted with our
mobile robot. The �rst experiment uses the roadmap
shown in Figure 2, while the second uses a slightly per-
turbed roadmap. The uncertainty parameters for the
actual mobile robot were used in both cases.

In the �rst simulated experiment, as shown in Fig-
ure 6(a), the global planner initially selects the path
start-b-a-f-goal by �nding the shortest path in the
roadmap from b to f. The node b is selected as the
subgoal since the uncertainty ellipse along the seg-
ment b-a intersects an obstacle. After the �rst robot
movement and subsequent localization (Figure 6(b)),
the actual robot position was close enough to the node
c so that the (re)planning by the path planner selected
a di�erent path (new)start-c-d-f-goal. Now, the
actual goal is selected since the uncertainty ellipses
indicate a collision-free path exists that does not en-
counter ambiguous sector labels. The goal is reached,
within the speci�ed tolerance, after the iteration.

Another simulation experiment is presented to en-
able comparison to an identical hardware experiment
conducted with our mobile robot. As can be seen in

Figure 7, two iterations are expected to be suÆcient
to reach the goal. The �rst trajectory command is for
the path start-f-g, and the second is for the path
(new)start-h-goal.

Hardware Experimental Results. Our naviga-
tion system was veri�ed using a real mobile robot in
a situation identical to the second simulation experi-
ment. The robot, the same as used in [13], has dif-
ferential drive with DC gear motors and encoders (see
Figure 8). Three ultrasonic range sensors are mounted
on the pan/tilt head so that each sensor gives readings
of 2�

3
radians. Only two commands | forward move-

ment and rotate at a �xed position| were used.

The results of the experiment are shown in Figure 9.
In order to get suÆciently close to the goal, three
movement and localization operations were required.
After the second localization, a trajectory connecting
the current position to the goal is generated. The third
localization con�rms the arrival at the goal.

6 Conclusion

In this paper, we describe the design and implemen-
tation of a method for mobile robot navigation in a
known indoor environment, such as a home or of-
�ce, that requires only inexpensive range sensors. Our
framework includes a high-level planner which inte-
grates and coordinates path planning and localization
modules with the aid of a module for computing re-
gions which are expected, with high probability, to
contain the robot at any given time. Our simulation
and hardware experiments show the practicality and
potential of our approach.

In current research, we are working to adapt the
method to handle partially known environments. For
instance, while the 
oorplans of most home or oÆce
environments may be known, there will generally be
many obstacles (e.g., furniture or people) whose po-
sitions and dimensions may not be known, or might
change during execution.
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