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Abstract

This paper describes a robust localization method for an
outdoor robot that gives tours of the Rice University cam-
pus. The robot fuses odometry and GPS data using ex-
tended Kalman filtering. We propose and experimentally
test a technique for handling two types of non-stationarity
in GPS data quality: abrupt changes in GPS position read-
ings caused by sudden obstructions to line of sight access to
satellites, and more gradual changes caused by disparities
in atmospheric conditions. We construct measurement er-
ror covariance matrices indexed by number of visible satel-
lites and switch them into the localization computation au-
tomatically. The matrices are built by sampling GPS data
repeatedly along the route and are updated continuously to
handle drift in GPS data quality. We demonstrate that our
approach performs better than extended Kalman filters that
use only a single error covariance matrix. With a GPS re-
ceiver that delivers 1 meter accuracy, we have been able to
localize good to 40 cm through a challenging route in the
Engineering Quadrangle of Rice University.

1 Introduction

Our goal is to build an autonomous mobile robot that
gives tours of the Rice University campus (see Figure 2).
While there are many successful mobile robots that au-
tonomously navigate and exploreindoorenvironments like
museums [13, 10] and offices [8] over extended periods of
time, there are far fewer examples1 in the outdoor arena,
most being research prototypes [1, 3, 11, 12, 6]. There
are several reasons why the design of autonomous outdoor
robots is challenging: outdoor environments vary more
than those indoors, and we do not have good characteri-
zations for them, and robust solutions to the localization�
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1The new grass mowing robots guided by externally placed wires at
lawn boundaries and around obstacles are not considered here, because
they require the environment to be instrumented for them.

problem for outdoor robots are still under development. We
believe that the pursuit of the engineering goal of building
an autonomous outdoor tour guide for Rice University, a
tree-filled oasis in the urban metropolis of Houston, will
help us make progress on the scientific goal of characteriz-
ing outdoor environments for which reliable mobile robot
navigation algorithms can be designed and built.

This paper describes the localization algorithms used by
our robot, their integration with the navigation algorithms,
and presents preliminary experimental results. An impor-
tant ground rule we followed to ensure portability of our
methods was to allow no instrumentation or modification
of our environment. A key issue for outdoor robots is the
choice of sensors for performing localization. While in-
door robot localization algorithms make extensive use of
sonars [14, 13, 5], they are virtually useless for outdoor
robots, as the environment consists mostly of vast open
spaces where the sensors return no valid range information.
They are, however, useful (together with bump sensors) for
local obstacle avoidance. With a view to determining the
smallest set of sensors needed to provide robust localiza-
tion and navigation in a campus environment, we have cur-
rently limited ourselves to data from odometry, which pro-
vides location and orientation information relative to a start
position, and GPS, which provides global positioning and
heading data. Our objective is to understand experimental
limits on the accuracy of localization achievable using just
these two sources of information.2

Our robot needs to give tours throughout the day with-
out requiring human intervention. It therefore requires lo-
calization accuracies of at least 40 cm at all times during
its entire operation. This is about half the width of the
walkways around our campus. Unlike office environments
in which short term localization errors are generally non-
fatal, small errors can have catastrophic consequences for
our outdoor robot e.g., falling off of a curb or missing a
sidewalk and rolling onto a busy street.

2We plan to add vision to our robot to augment odometry and GPS for
localization.
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It is well known that dead-reckoning using pure odom-
etry is not a very robust localization technique for robots
[2, 6] that cover long distances, and are in continuous op-
eration over extended periods of time. This is because er-
rors in odometry accumulate over time due to inaccuracies
in the kinematic model, precision limitations of encoders,
and unobservable factors like wheel slippages that are not
accounted for in the kinematic equations. Kalman filtering
of carefully calibrated odometric data with state measure-
ment signals provided by a redundant sensor (e.g., a gyro-
scope) can provide significant improvements [6]. However,
they still cannot on their own provide localization accura-
cies of 40 cm over extended periods of time, as needed for
our problem.

GPS is now a standard technique for obtaining absolute
position information for outdoor robots [6, 3, 11, 1, 12].
Our GPS receiver (an Invicta 210S) can provide position
information accurate to about a meter (�����	��
�
�
�� ). It
also provides estimations of the current heading by using
the Doppler shift of the satellite signals. The accuracy of
this estimate depends greatly on the speed at which the GPS
antenna is moving, but at the top speed of our robot, we
have determined that��������� ��� radians. Differential GPS
systems like RTK GPS can provide centimeter level reso-
lution, however they cost an order of magnitude more, and
their performance is very sensitive to the number of visi-
ble satellites [3]. GPS information alone is not sufficient
to achieve the localization accuracies needed for our ap-
plication, because the tour guide’s route on our campus is
largely covered with trees and runs very close to tall build-
ings which obstruct line of sight access to the GPS satel-
lites. Further, atmospheric conditions degrade the quality
of the GPS signals in varying ways at different locations.

In this paper, we adapt Extended Kalman Filtering
(EKF) [7, 9] used in [6, 3, 12] for mobile robot localization
to fuse odometry and GPS data. Our innovation is the addi-
tion of a dynamic mechanism to handle non-stationarities
in GPS data quality. Because of the rapid change in qual-
ity of GPS data when the view of satellites is obstructed
in an urban campus environment, the standard approach of
using a single covariance matrix to model measurement er-
rors in GPS data is not adequate. This approach necessi-
tates artificially increasing variances more than is usually
needed, causing slower convergence of the Kalman filter.
If the data quality diminishes suddenly, the Kalman fil-
ter does not account for the reduction in quality quickly
enough, and our robot performs poorly because inaccurate
GPS data is weighted too heavily. Conversely, if our robot
gains a line-of-sight path to additional satellites after hav-
ing adapted to a reduced quality GPS signal, the increased
variances cause the Kalman filter to not take advantage of
the higher quality data, so control errors in our robot ac-
crue again. We show that by using a finite number of error

covariance matrices in different GPS quality situations, cre-
ating them as needed and updating them dynamically, it is
possible to handle changes in GPS signal quality quickly
and effectively.

The paper is organized as follows: In Section 2, we give
a brief description of the tour guide task as well the me-
chanical and sensor configuration of our robot. We lay out
the basic EKF algorithm upon which our localization algo-
rithm is based. We then describe the extension to the EKF
algorithm that dynamically constructs error covariance ma-
trices to handle non-stationarities in the GPS data quality.
Section 3 contains a brief discussion of issues in design-
ing control algorithms for navigation that use position and
heading estimates produced by the localization algorithm.
In Section 4, we provide details of our experiments and
demonstrate that the dynamic measurement error covari-
ance matrix generation handles rapid changes in GPS sig-
nal quality well. We conclude with a brief summary of our
ongoing work in designing methods for human interaction
with our robot.

2 The Tour Guide Task and Robot

2.1 The task and the robot

The tour guide task requires the ability to navigate in a
dynamic, uninstrumented, potentially dangerous (vehicular
traffic on streets, sharp curbs, moving obstacles such as an-
imals and people, etc.) urban environment. In addition, the
robot needs to interact with a tour group in an interesting
and informative manner. Interaction is tightly interwoven
with navigation: the robot needs to be aware of its loca-
tion so it can use its location context to answer questions
appropriately.

Our tour guide robot is an ATRV Jr. from RWI Inc,
named Virgil3 (Figure 1). It is a four-wheeled robot de-
signed for outdoor use and comes equipped with an array
of sonars and odometry. We added a GPS receiver used
typically in marine applications which receives real-time
corrections from the Coast Guard station at Galveston. We
also added touch-sensitive bumpers for obstacle detection
and avoidance. The wheels on the same side of the robot
are mechanically coupled. The raw encoder information is
not directly available, neither do we have access to the full
kinematic model of the robot which is used by the on-board
odometry computation to provide integrated measures like
distance traveled and change in orientation in a given sam-
pling interval. Both odometric and GPS data are sampled
at 10Hz in our robot.

3Virgil is named after the guide in Dante’sInferno.
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Figure 1: Virgil: The Rice campus tour guide

2.2 Odometry

Before integrating data from different sources, we cal-
ibrated the odometry using the GPS receiver. Because
odometry measures the number of rotations in the wheels
rather than the actual distance traveled, several sources of
error can accumulate. Largely, systematic error is due
to tire size miscalculations: as the tires wear down, the
amount of linear distance traversed reduces in comparison
to the number of rotations the tires travel. In addition, be-
cause the tires are constantly being worn down, this analy-
sis must be reperformed periodically to estimate new sys-
tematic error values. This error can be directly compen-
sated for by scaling the commands given to the drive sys-
tem. In addition, other sources of error such as slippage
and surface imperfections result in a random component to
the error whose variance can also be approximated through
repeated trials.

By traveling, according to odometry, in straight lines for
fairly large distances (20 meters), and comparing the odom-
etry’s results for distance traveled with GPS data averaged
over 100 readings, we are able to determine approximate
values for systematic and random errors in odometry. In
addition, to limit the effect of systematic inaccuracies in
translating GPS coordinates into local coordinates, we per-
formed the test from many different starting positions and
headings. It is possible that this method reports a slightly
higher than actual random error rate due to GPS inaccura-
cies. To determine turning error, we follow a similar pro-
cedure of moving forward a distance and using GPS data
at the endpoints of that movement to approximate the cur-
rent heading, using odometry to turn a preset angle, and
then move forward again to calculate the true angle turned
using averaged GPS data. This is inherently less accurate
than calculating distance over a straight path, but gives a
reasonably good approximation of the true errors. Again,
because of GPS inaccuracies, the random component in the
measured error will likely be larger than the true random
error.

After performing these tests, we observed that our
robot’s odometry consistently under-maneuvered both

Movement Systematic Error Random Error
Translational -0.0290 0.0036
Rotational -0.0492 0.0589

Table 1: Systematic errors and random error variances
measured in odometry related to the two types of motion
supported.

while traveling in straight lines and while turning as a result
of the smaller than expected size of the worn tires. These
results are presented in Table 1 as a ratio of error to dis-
tance traveled for 29 trials of both the translational and ro-
tational measurements which approximates the actual error.
Systematic error is accounted for directly in the odometry
system, increasing the robot’s perception of how far it has
traveled by the appropriate ratio, and random error is han-
dled as uncertainty in the data fusion process.

2.3 Extended Kalman Filter

Kalman filtering is a well known technique for state and
parameter estimation [7, 9]. The standard Kalman filter as-
sumes that the controlled process is governed by a linear
stochastic difference equation. An extended Kalman fil-
ter handles non-linear stochastic processes by linearizing
about the current mean and covariance.

In the 2D outdoor robot localization problem, the state
of the robot is its position and orientation����������� � in a fixed
frame of reference. The state (0,0,0) is the geographic cen-
ter of the Rice campus (Baker Fountain). All�!�"�#�$� posi-
tions are measured in centimeters north and east relative to
this location, and the orientation� is the angle from due
north.

The robot’s state evolves according to the following sys-
tem of non-linear stochastic difference equations. The state
of the system at time% is ����&$�#��& ���'&'� . The wheel encoders
yield, at each sampling period the translation(*)!& along the
heading�'& and a rotation(,+�- . These equations relate the
state at time%/.0� to the state at time% , and the internally
sensed translation(*)!& in the direction�'& and rotation(�+#-
in the interval between times% and %1.�� . The zero mean
vector 23&4�657�!
98;:/&<� represents (normally distributed)
noise in the state evolution process.��&�=�>?� �*&3.@
BA'C��'&D(*)!&E.723&�F��&�=�>G� ��&H.ICKJML,�'&�(*)!&E.723&�N� &�=�> � � & .7( +�- .72 &K+
These equations can be summarized as follows, whereC�&
is the state of the system at time% and (,&O�P��(*)!& ��(,+�-<� is
the vector obtained from the encoders for the period from
time % to time %Q.R� .CD&�=S>T� UV�WCD& ��(,& ��23&��
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We use the GPS signal to determine the measurement error
between the actual state and the internally computed state
above. We model the measurement process as followsX &Y� CD&3.7Z�&
whereX & is the measurement of the actual stateC & at time % ,Z & �[57�\
]8;^ & � is a zero mean measurement noise vector.
The measurement and process noise vectors are assumed to
be independent of one another, and to have normal proba-
bility distributions represented by the vectors: & and ^ & of
variances for the three state components� , � and � . There
is an important subtlety here caused by the fact that the
GPS data is in a different coordinate system from the one
maintained by our robot. We use the equations in [4] to
convert global GPS coordinates into local (Baker Fountain
relative) coordinates. These equations perform very accu-
rate translations taking the curvature of the earth’s surface
into account, and are in wide use in the agricultural world.
As a result, we do not observe the loss of precision in trans-
lating between local and global coordinates noted in [6].

We now show the prediction and update steps in the
EKF which combines internal state (odometric) and exter-
nal measurement (GPS) data. The equations for the predic-
tion step are:

C &�=�>#_`& � UV�WC &B_`& ��(,& �#
 �a &�=�>#_`& � bc& a &B_`& bd&'ef.@:/&g &�=�>#_`& stands for our prediction of the state vector for time%O.h� given internal sensor information from time% and
knowledge of the state at time% .

a &�=�>#_`& is the a priori
estimate of the error covariance, i.e. the covariance of the
difference between the actual state and the state predicted
on the basis of measurements till time% . bc& is the Ja-
cobian of the processUV�i�j� with respect to the state vectorg �k�!�"�����#��� . By differentiating the state evolution equa-
tion with respect toC , we obtain the following matrix:

bd&Y�
lm �n
 oH(p)!&<C�JMLq���'&<�
 �n(p)!&D
KA'C��!�'&��
r
 �

st

Note that: & is the process error covariance matrix for time% . For our robot, the prediction equations reduce to:g &�=S>�_`& � UV� g &K_;& �#uV&v�#
 �a &�=�>#_`& � b & a &B_`& b e & .@: &
Essentially, these two prediction equations project the state
and covariance estimates from time step% to %Q.R� .

The update equations correct the state and covariance
estimates with the measurementX & . �w& is the GPS read-
ing at time % converted into the local coordinate system for
the robot. We compute the Kalman gainx and use it to

correct C and
a

as follows. ^ & is the measurement noise
covariance matrix.

x � a &�=�>#_`& � a &�=�>#_`& .I^c&<�By >C &�=S>�_`&�=�> � C &�=�>#_`& .7xI���z&do{C &�=�>#_`& �a &�=�>#_`&�=�> � �\|/o{x�� a &�=�>#_`&
x is the weight allocated to the state and error covariance
correction. The accuracy of^ & determines the effective-
ness of the EKF, and because the accuracy of the GPS mea-
surement changes based on a variety of factors, a single
predetermined̂ & in many cases does not achieve good lo-
calization accuracy. Furthermore, because the accuracy of
the GPS receiver can change almost instantaneously as the
robot Virgil passes below a tree or near a building when
one or more satellites are obstructed from view, slowly up-
dating measurement error variance using new data points is
not effective. If we do not model the temporal variations in
the measurement error^}& correctly, then the filter will be
unable to respond quickly enough to sudden deterioration
or sudden improvement in GPS data quality.

2.4 Handling non-stationarity in ~��
There are two kinds of changes of^}& in time, thus we

have developed two schemes to handle these changes. One
change occurs abruptly and is caused by the number of vis-
ible satellites changing; the other is more gradual and rep-
resents a drift as atmospheric conditions and other factors
affect signals. By analyzing the GPGGA NMEA string re-
turned by the receiver, we can determine when additional
satellites are acquired or lost, and keep a distinct^}& for
each number of satellites. Over time, each of these val-
ues is updated dynamically based on new data. We switch
between thesê}& ’s as determined by the number of vis-
ible satellites and are able to obtain much faster conver-
gence to the true state than by using a single measure-
ment error vector which averages them all. In addition to
the GPGGA string, the GPS receiver supplies the GPRMC
message which provides the current direction of travel of
the robot, but the accuracy of this value varies depending
on the speed of the robot. We attack this problem using a
similar method of swappinĝ & ’s depending on ranges of
speed, almost completely ignoring data that is read at very
low speed.

To handle the second kind of change, we examine the
evolution of the error term���z&VofC &�=�>#_`& �B�!�w&do�C &B=�>�_`& � e
over 5 time steps, and correct^}& to approach the averaged
error term measured over the5 time steps. This process
tracks the drift in̂}& and yields better convergence prop-
erties for the extended Kalman filter, as documented in our
experimental section.
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3 Integration of localization with navigation

Our localization algorithm provides estimates of the cur-
rent position and orientation of the robot in the campus co-
ordinate frame centered at Baker Fountain. We specify the
tour as a list of way points in this reference frame. We have
built a simple proportional controller that drives the robot
from the start point through the way points in order of oc-
currence. This controller servos on the difference between
the current and desired position and orientation. Low level
obstacle detection and avoidance is performed with sonars
and two bump sensors.

The control correction choice we explore is whether to
turn in place (forward-speed = 0) to achieve a heading cor-
rection, or whether to turn and move forward at the same
time. The correction frequency controls the rate or con-
ditions under which corrective motor commands (turn and
speed) are issued. All of our controllers make active use of
the stability of the Kalman filter state estimates to decide
when to issue corrective actions. They wait for the confi-
dence in the state estimates to achieve a certain threshold
(measured by the difference in successive Kalman filter es-
timates) before changing turn and speed.

The first controller we built attempts to simultaneously
reduce position and heading differences, and therefore
turns as fast as possible to reduce the difference between
current and desired heading without changing the forward
speed. This controller is very sensitive to choice of the ac-
tion confidence threshold. If it is set too high, the robot
continues to move forward at its current speed in the cur-
rent direction for a longer period of time. If the robot is off
course to begin with, it moves farther from the approved
path before correcting, and the correction turn is larger.
Lowering the confidence threshold results in a greater num-
ber of incorrect turns causing small movements away from
the desired path, with the robot drunkenly weaving around
the desired path.

To correct this problem, we built a second controller
identical to the first except that it cuts forward speed to
zero while turning. For a set time interval (half a second) it
turns toward the goal, reducing the difference between cur-
rent and desired heading. It interleaves forward motion (to
reduce difference between�!�"���]� locations) with in-place
turns (to reduce heading differences). The advantage of
eliminating forward motion during turns is that our skid-
steer robot turns more accurately and stays closer to the
planned route. However, the jerkiness of consecutive turn
and forward motion phases proved distracting for people in
tour groups.

In our final and most successful attempt, we returned
to making course corrections during forward movement.
However, instead of attempting to reduce the difference be-
tween current and goal heading as soon as possible, we re-

Distance Heading �9�E�i�B�`���<�
Uncorrected GPS 1.16 1.69 1.58
EKF: Static ^c& 1.33 2.05 1.64
EKF: Dynamic ^c& 1.08 1.33 1.54

Table 2: For each data fusion algorithm used, this ta-
ble presents the ratio of the distance traveled to the total
straight line distance of the tour as well as the average and
standard deviation of the difference between the heading of
the straight line path and the heading chosen by the robot
controller.

duce the heading difference slowly, causing the robot to
gently arc its way to the goal state. By approaching the
goal heading slowly, we reduce our reliance on knowing
the exact difference between the current and goal headings;
knowing the sign and order of magnitude of the difference
suffices. This causes drifts and over-corrections to dras-
tically reduce and results in smooth and fluid motion be-
tween way points on the tour.

4 Experimental Results

The way points in the tour of the Engineering Quadran-
gle are shown in Figure 2. This is a challenging route that
runs close to several tall buildings, large granite sculptures
and several rows of trees. In our experiments we compare
the behavior of (1) a dual controller that uses GPS when
available, and odometry when it is not, (2) an EKF based
controller that fuses odometry and GPS data without con-
sidering non-stationarities in the measurement errors, (3)
our EKF based controller that tracks and updates measure-
ment error covariances in time.

At particularly troubling times for the GPS receiver, the
first method falls back entirely to odometry, until GPS and
odometry can be resynchronized according to average ve-
locity readings. The result of this is that the robot some-
times travels without any GPS data for extended periods
of time, and localization errors accumulate until it is com-
pletely off course. The second method works well when
many satellites are visible and the quality of the GPS data
is good. However, when satellites are lost, which often hap-
pens in the last stretch of the tour, the robot’s ability to lo-
calize correctly degrades significantly. Tracking changes
in the measurement error covariance matrices dramatically
improves localization accuracy, because inaccurate GPS
data is weighted less heavily with respect to odometry, and
their combination provides information that is able to keep
the robot within 40 cm of the desired route.

Table 2 presents results averaged over three runs of the
three methods. For each method we measure the devia-
tion from a straight line path between the way points on
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Figure 2: A top view of Rice’s Engineering Quadrangle.
The sculptures in the grassy centers are giant granite mono-
liths called 45, 90, and 180, corresponding to their angles
of inclination. The tour path is given by points� through�

.

the tour. We take the ratio of the length of the actual path
covered to the length of the shortest path between the way
points. We also provide the mean and standard deviation of
the differences in heading (sampled at 10Hz) between the
true heading between two way points and the orientation of
the robot between those two way points. These two mea-
sures give us a sense of the accuracy of localization and
the smoothness of the control policies that use the localiza-
tion measures. Figures 3 and 4 show the actual trajectories
of the robot over the above three runs with static and dy-
namic ^c& ’s. These runs were gathered when the variability
in the GPS data quality was not as high, so the difference
between the two approaches surfaces in the consistency of
the trajectories generated with dynamic^c& ’s.

It should be noted, however, that in areas with fairly
steep or inconsistent inclines, our robot’s odometry is in-
capable of determining the angle of the incline at which the
robot is traveling, and thus can not determine the horizontal
speed of travel. Furthermore, this information is difficult to
deduce from the GPS readings; while altitude can be deter-
mined from GPS, the value is significantly less reliable than
latitude and longitude readings. To compensate for this un-
certainty, the variances associated with odometry would in-
crease greatly. It is conceivable that under these conditions
the extended Kalman filter even with the mechanisms for
handling non-stationarity in GPS signal quality will be un-
able to converge on the correct location and heading of the
robot. However, the addition of an inertial navigation sys-
tem (INS) with six degrees of freedom would aid in cor-
recting these errors. We would need to construct a new
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Figure 3: Trajectories with EKF fusion of GPS and odom-
etry using statiĉc& .
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Figure 4: Trajectories with EKF fusion of GPS and odom-
etry using dynamiĉ & that accounts for non-stationarities
in GPS data quality.

EKF that fuses odometry, GPS and INS data appropriately.
Since the Rice campus is relatively flat, our experimental
results do not reflect this problem.

5 Discussion and Conclusions

Our work builds on several existing pieces of work in
designing mechanisms for fusing odometry and GPS data
for localizing outdoor mobile robots. The idea of using
short term localization based on dead reckoning when GPS
data is available in several papers including [6, 1, 12]. The
use of extended Kalman filtering is proposed in [6]. How-
ever, they advocate the use of a dual controller where at any
given time, one of a pure GPS localizer or a Kalman filter
that fuses gyro and odometry data is used. For our prob-
lem, combining the GPS data with odometry using differ-
ent measurement error covariance matrices that track the
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non-stationarities in the quality of the GPS signal proved
to be the more effective technique. The use of differen-
tial GPS (RTK GPS) is advocated in [3]; we believe their
technique can also benefit from our schemes for handling
non-stationarities in the GPS signal quality.

Our current work is in extending the range of the tour
to go beyond the Engineering Quadrangle to cover the rest
of the Rice University campus. The new route will require
the robot to cross a busy campus street and we are work-
ing on mechanisms to ensure our robot’s safety during this
crossing. We are also incorporating voice recognition with
dynamic grammars to enable our robot to recognize ques-
tions put to it by members of tour groups and to respond in
a location-aware manner to such questions.
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