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Abstract

This paper describes aConcurrent Mapping and Localisation
(CML) algorithm suitable for localising anAutonomous Underwa-
ter Vehicle (AUV). The proposed CML algorithm uses a standard
off-the-shelf sonar for sensing the environment. The returns from
the sonar are used to detect targets in the vehicle’s vicinity. These
targets are used in conjunction with a vehicle model by the CML
algorithm to concurrently build an absolute map of the environ-
ment and localise the vehicle in absolute coordinates. In order
for the algorithm to work, the stored targets must be associated to
the sonar returns at each iteration. Given the nature of sonar data,
false returns complicate this process. The choice of targets and a
suitabledata association strategy is, therefore, vital. The chosen
targets consist of returns of a significant strength. The segmen-
tation detects these targets and calculates (a) the relative position
of their center of mass with respect to the vehicle, (b) the targets’
surface size, and (c) the targets’ first invariant moment. This infor-
mation is used by the system to perform the data association. We
have chosen to adapt the well knownMultiple Hypothesis Tracking
Filter (MHTF) [1] to the CML structure. This is ameasurement-
oriented approach that finds the probability that an established tar-
get gave rise to a certain return. The paper presents results with
real sonar data.

1 Introduction

The advent of AUVs has posed a number of new challenges
to the robotics research community. Amongst these chal-
lenges the question of true autonomy remains unresolved.
Autonomy can be defined as the ability to provide for one-
self without the help of others.Unmanned Underwater Ve-
hicles (UUVs), be they AUVs or ROVs, are not yet capable
of navigating without external assistance. Navigation itself
poses three distinct questions: “where am I?”, “where am

I going?” and “how should I get there?” [2]. This paper
focuses on the first of these questions.

Most UUVs are equipped withdead-reckoning sensors,
such as a Doppler Velocity Log (DVL), inertial rate gy-
ros, etc. These types of sensors suffer from drift and
the error in the vehicle’s position will thus grow without
bounds. To fix the position of the vehicle on the world
frameabsolute-positioning sensors are used. Commercial
absolute-positioning sensors adapted to the underwater en-
vironment includeacoustic positioning systems;acoustic
super short, short and long baseline navigation. All of
these systems require the vehicle to be within a volume of
water that they cover, therefore restricting the vehicle’s ex-
ploratory capabilities and not allowing for true autonomy.
This has motivated research on CML. The basis of CML is
to build a map and concurrently localise the vehicle in the
map that is being built [2, 3, 4]. Our chosen approach is
to implement thestochastic map proposed by Smith, Self
and Cheeseman [5]. The stochastic map is essentially an
augmentedExtended Kalman Filter (EKF). Due to the na-
ture of the algorithm, as the number of targets increase they
are simply added onto the state vector and the matrix opera-
tions eventually become too costly for real-time implemen-
tation. Different methods have been proposed to tackle this
particular problem. Of these, covariance intersection [6],
decoupled stochastic mapping [7] and the geometric projec-
tion filter [8] show potential. Other prominent problems re-
lated to the stochastic map approach are the feature extrac-
tion and data association. Our previous research on sonar
data [9, 10, 11, 12] presented different approaches for track-
ing returns, for the purpose of classification and obstacle
avoidance. This research allowed us to develop a number of
algorithms for segmenting sonar returns and tracking iden-
tified targets. Our latest research efforts consist in blending
this knowledge with CML. The proposed system identifies
targets of significant signal strength and feeds the data as-
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Figure 1: Overview of the System

sociation algorithm, an adapted version of the MHTF de-
veloped by Reid [1]. Targets that have been appropriately
associated will be used to update the stochastic map, new
targets will be integrated into the stochastic map and returns
from unreliable targets will be ignored.

The following section outlines the operation of the dif-
ferent modules of the system and the interactions between
these. Section 3 will describe the theoretical principles used
by the underlying algorithms. Section 4 describes our im-
plementation. Section 5 will illustrate the results. Finally,
section 6 will provide a brief conclusion of our findings and
outline our future work.

2 Overview

The main modules of the system can be seen in figure 1.
The sonar data is initially treated as an image and processed
by means of standard image processing techniques. It is
subsequently segmented and the targets are identified. The
segmentation process provides the data association, MHTF,
with a set of observed relative distances between the targets
and the vehicle, along with the observed targets’ size and
first invariant moment descriptors [13].

The MHTF data association algorithm associates the seg-
mented targets to existing targets on the stochastic map.
Segmented targets that are not associated to any of the
tracked targets are used to initialise new map targets. False
alarms identified in the data association process are dis-
carded.

The stochastic map is updated and maintained in absolute
coordinates.

3 Theoretical Principles

In this section we examine the theoretical foundations be-
hind the stochastic map and the MHTF, sections 3.1 and 3.2.
This theory forms the backbone of our approach, described
in section 4.

3.1 The Stochastic Map

The stochastic map is an augmented state EKF [14, 15]. In
this incarnation the filter now holds the relevant states of the
vehicle and those of the targets in a single state vector. The
advantage of this method is that it allows to continually up-
date and maintain the vehicle-to-vehicle, target-to-vehicle
and target-to-target correlations. Recent research [16] has
demonstrated a number of benefits obtained by maintaining
these correlations, namely:

� the determinant of any submatrix of the map covari-
ance matrix decreases monotonically as observations
are made successively,

� in the limit, as the number of observations increases,
the target estimates become fully correlated, and

� in the limit, the covariance associated with any single
target location estimate is determined only by the ini-
tial covariance in the vehicle location estimate.

These benefits have motivated our choice of our approach.
Under this architecture the new state vectorx(�) assumes
the following form,

x(k) =
�
xv(k) x1(k) x2(k) : : : xn(k)

�T
(1)

where xv(k) holds the state of the vehicle and
x1(k);x2(k); : : : ;xn(k) hold the states of then targets.
The estimated error covariance for this system,

P(k) =

2
666664

Pv v(k) Pv 1(k) Pv 2(k) : : : Pv n(k)
P1v(k) P1 1(k) P1 2(k) : : : P1n(k)
P2v(k) P2 1(k) P2 2(k) : : : P2n(k)

...
...

...
. . .

...
Pnv(k) Pn 1(k) Pn 2(k) : : : Pnn(k)

3
777775

(2)

where the sub-matricesPv v(k),Pv i(k) andPi i(k) are the
vehicle-to-vehicle, vehicle-to-target and target-to-target co-
variances respectively.

The state and covariance are updated according to the
EKF update equations. The stochastic map assumes fixed
targets and the resulting state propagation will become,

x̂v(k) = fv[x̂v(k � 1);u(k);0; k] (3)

wherex̂v(�) is the vehicle’s state andfv[x̂v(�);u(k);0; k] is
the vehicle’s dynamic model. And its associated covariance
will be propagated thus,

P(k) = FxvP(k � 1)FT
xv

+FwvQ(k)FT
wv

(4)

whereFxV
is the Jacobian of the vehicle model with respect

to the vehicle state, used to linearise the state of the vehicle
error ~xv(k � 1), andFwv

is the Jacobian of the vehicle
model with respect to the process noise.
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The prediction for observed targeti is written as

zi(k) = hi[x̂(k);0; k] (5)

wherehi[x̂(k);0; k] is the observation model. Thus the in-
novation�i is defined as

�i = ẑi(k)� zi(k) (6)

with innovation covariance,Si(k), defined as

Si(k) = Hi(k)P(k)HT

i
(k) +R(k) (7)

whereH(k) is a matrix holding the Jacobian of the ob-
served target evaluated at the latest estimate of the state and
R(k) is a matrix of the measurement error covariance.

The gain of the filter,Ki can now be written as,

Ki(k) = P(k)HT

i
(k)S�1

i
(k) (8)

And the corrected state estimate becomes,

x̂(k + 1) = x̂(k) +Ki(k)�i(k) (9)

and its associated covariance is updated according to,

P(k + 1) = P(k)�Ki(k)Si(k)K
T

i
(k) (10)

3.2 MHTF

The MHTF algorithm calculates the probability that each
established target, or a new target, gave rise to a certain ob-
servation. The filter works by evaluating hypotheses of all
the possible associations,
(k), up to timek.

Hypotheses are made by associating to
(k � 1) each
observation,zi(k). For each observation,zi(k), there are
three possible associations:

� it belongs to an existing target,

� it is a new target or

� it is a false alarm.

A hypothesis matrix is built where all the possible configu-
rations are considered.

The joint cumulative event,�(k)l, at timek is made up of
the joint event,�(k�1)s, and the current association event,
�(k). The conditional probability of a cumulative event at
timek can be written as,

P f�(k)ljZ(k)g = P f�(k);�(k � 1)sjZ(k); Z(k � 1)g
(11)

From this a recursive relationship may be written,

P f�(k)ljZ(k)g =

1

c
p [Z(k)j�(k);�(k � 1)sjZ(k � 1)]

P f�(k)j�(k � 1)s; Z(k � 1)gP f�(k � 1)sjZ(k � 1)g

(12)

This can be shown to be [15],

P f�(k)ljZ(k)g =

1

c

�!�!

mk
�F (�)�N (�)V ����

Qmk

i=1
[Nti [zi(k)]]

�i

Q
t(P

t
D)Æt(1� P t

D)1�ÆtP f�(k � 1)sjZ(k � 1)g

(13)

where�, � andmk are respectively the number of false
alarms, new targets and measurements in the event�(k),
�F (�) and�N (�) are the densities of false and new tar-
gets respectively,V is the hypervolume of the surveillance
region,N signifies the normal law and�i is an indicator
variable of value one if measurementz i(k) came from an
established track and zero otherwise,t is the number of tar-
gets,P t

D
is the probability of detecting prior targets andÆT

is an indicator variable which is of value one if targett is
detected at time k and zero otherwise.

The conditional probabilities of each cumulative event
are calculated and the most probable event is selected as
the valid hypothesis.

4 Implementation

We now describe the proposed system. Section 4.1 relates
certain aspects relevant to the pre-processing of sonar data.
In section 4.2 we describe the processing and segmentation
of the sonar returns. A description of the changes made
to the MHTF algorithm to fit into our structure is given in
section 4.3. Finally particular aspects of our stochastic map
algorithm are examined in section 4.4.

4.1 Sonar Data

Each scanned sector returned by the sonar is treated as an
image by the segmentation algorithm. This is a reliable pro-
cess as most electronically scanned sensors allow for up-
date rates of up to seven frames per second, for their shorter
range settings, and the skew for speeds of up to 4 knots in
many cases falls within the range resolution of the sonar.
For mechanically scanned sonars the algorithm is limited to
slow moving vehicles, typically much less than 1 knot, or
vehicles equipped with a suitable dynamics model, or suffi-
cient dead-reckoning sensors.

4.2 Data Processing and Segmentation

Each sector image is low-pass filtered to remove the
backscatter noise. In this implementation we use a median
filter, however other smoothing filters can also be imple-
mented. The size of the window of the median filter will de-
pend on the sector size, range, angular and range resolution
and the gain setting of the sonar. Our procedure consists in
manually calibrating the algorithm once for each parameter
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setting. This procedure, although cumbersome, generally
provides far better results.

Once the images have been smoothed the significant re-
turns are obtained by applying a double threshold. The val-
ues of which are obtained from the histogram of the image.
The double threshold uses eight-connectivity to define the
neighbourhood of the pixels. The output from the double
threshold is a binary image.

The algorithm subsequently extracts features for each ob-
servation. These features are the observations relative cen-
ter of mass, with respect to the vehicle, the size in pixels
of the target and the targets’ first invariant moment [13].
The size of the targets are subsequently converted to meters
squared. These features are the observations which will be
fed onto the MHTF data association algorithm. Observa-
tions which are adjacent to the image edges are ignored as
their center of mass will not be the true center of the object.

4.3 The MHTF Implementation

The proposed implementation uses bothclusters andsuper-
clusters to reduce the number of hypotheses [15]. A cluster
is formed for a measurement that falls within the validation
gate of an established target, any subsequent measurements
that fall within that gate will belong to the same cluster. The
validation gate is a threshold and the measurement must
satisfy the following criteria,

�i
T
Si
�1�i �  (14)

where the value for is obtained from the�2 distribution. If
a measurement falls inside two clusters, those clusters will
form a supercluster. Hypotheses will be formed such that
measurements will only be associated to targets in belong-
ing to the same cluster or supercluster. This system allows
for a dramatic reduction in the amount of computation re-
quired in finding the most probable cumulative event.

4.4 The Stochastic Map Implementation

The stochastic map, as explained in section 3.1, holds the
state of the vehicle and targets. In our application, we as-
sume no knowledge of the vehicle’s dynamic model, and
no inputs from dead-reckoning sensors. Under these condi-
tions the stochastic map will only be observable with at least
two targets in view. Given these restrictions section 4.4.1
describes the assumed model. Section 4.4.2 describes the
targets state vectors and the procedure for adding new tar-
gets onto the map.

4.4.1 Vehicle Model

Given noa priori knowledge of the vehicle model we as-
sume a linear model description. This model has been found

to work well and can be used with any vehicle. The state of
the vehicle takes the following form,

xv(k) =
�
x _x y _y � _�

�T
(15)

with the following dynamic model,

Fv(k) =

2
4Fvx(k) 0 0

0 Fvy (k) 0

0 0 Fv�(k)

3
5 (16)

where

Fvx(k) = Fvy(k) = Fv�(k) =

�
1 dt

0 1

�
(17)

And process noise,

Qv(k) =

2
4Qvx

(k) 0 0

0 Qvy
(k) 0

0 0 Qv�
(k)

3
5 (18)

where,

Qvx
(k) =

�
1

4
dt4 1

2
dt3

1

2
dt3 dt2

�
�
2
vx (19)

4.4.2 Target Model and Addition of New Targets

Each target has a state vector with states for its position, size
and first invariant moment,

xi(k) =
�
xi yi si mi

�T
(20)

The updating of the state is done according to the procedure
outlined in section 3.1.

Observations that were not associated to an existing fea-
ture will be added to the stochastic map state and covari-
ance. The new observationznew = [r � s m]T is esti-
mated with respect to the vehicle’s reference frame,

xn+1(k) =

2
664
xv(k) + r cos(�+ �)
yv(k) + r sin(�+ �)

s

m

3
775 (21)

The new map state and associated covariance will be

x(k) 

�
x(k)

xn+1(k)

�
(22)

Pn+1n+1(k) = LxvPv v(k)Lxv
T + LznewR(k)Lznew

T

Pn+1v(k) = Pv n+1
T (k) = LxvPv v(k) (23)

whereLxv andLznew are the Jacobian of equation 21 with
respect to the robot vehicle statex̂v evaluated at̂xv(k) and
to the new observationznew evaluated atznew.
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Figure 2: Stochastic map and a sonar frame

5 Results

This section shows results for two experiments. The first ex-
periment was carried out in the laboratory’s tank. This ex-
periment, section 5.1, was performed under controlled con-
ditions and ground truth data is available for validation. The
data for the second experiment, section 5.2, was recorded on
a field trip, there is no ground truth data for the vehicle’s or
targets’ position.

5.1 Tank Experiment

This experiment was carried out using a Tritech Dual Fre-
quency Sonar. This is a mechanically scanned sonar and the
frame rate is of two seconds. It has a horizontal beam-width
of 2Æ and a vertical beam-width of20Æ when operating at
675 kHz. The operating range was set at 5m, the sonar of-
fers a 0.05 m range resolution. The sonar was mounted on
the laboratory’s planar Cartesian robot, this system allows
for the sonar to be placed anywhere within the tank. The
planar Cartesian robot has optical encoders allowing for a
position accuracy of 1 mm. In this experiment we placed
two cylinders in the tank and used them as targets. A heuris-
tic was added to the algorithm so that it would ignore the
tank walls and any measurements that fell outside. Figure 2
illustrates a frame of the sequence used in the experiment
and the stochastic map, including the vehicle’s trajectory at
the end of the run and the tracked targets(numbered). The
consistency of the map can be corroborated by examining
figure 3, this figure shows the error in X and Y coordinates
and the one standard deviation uncertainty bounds.

5.2 Field Experiment

The data for the experiments was obtained on trials at Oban
on the west coast of Scotland. The sonar used was the
SeaBat 6012 [17]. This sonar has a sector size of90Æ by
15Æ. The sonar head contains all solid-state electronics re-
quired to form and transmit pulses at 455 kHz and receive
returned energy into60 1:5Æ electronically formed beams.

Figure 3: Innovation and uncertainty bounds

The sonar range was set at 10 meters. The sonar was car-
ried by a diver towards a set of pier legs. No ground truth
was available. The sequence consists of 95 frames, figure 4
shows the first and last frames respectively. The update rate
of the sonar was of five frames per second.

Figure 4: Oban sequence: first and last frame

Given the lack of ground truth, the filter consistency is
observed by plotting the innovation error and the one stan-
dard deviation uncertainty bounds. Figure 5 illustrates the
results for target three. A qualitative consistency analysis is
also possible by combining the last frame, subject to a rota-
tion and translation, with the first frame. Figure 6 illustrates
the outcome for such mosaic and the stochastic map ob-

Figure 5: Innovation and uncertainty bounds
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Figure 6: Stochastic map and manual mosaic

tained with this data set. The map illustrates the trajectory
followed by the sonar, the position of the tracked targets
(numbered) and the uncertainty of both the position of the
sonar and the targets, represented by ellipses. The mosaic
was created manually and the aim was to minimise the error
obtained from the greylevel values of corresponding pixels.
The mosaic suggests that the heading difference between
the first and last frames is of32Æ clockwise and the trans-
lation is of 0.51 meters along the x-axis and 1.29 meters
along the y-axis. These values can be compared with the
output values of the algorithm which suggest an clockwise
rotation of30:14Æ and a translation of 0.34 meters along the
x-axis and 1.29 meters along the y-axis. The error falls well
within the standard deviation bounds of the filter which are
2:60Æ for heading and 0.19 meters and 0.10 meters for the
translation along the x and y axis respectively.

6 Conclusions

The potential of the feature extraction and data associa-
tion algorithm has been demonstrated with results using
real data. The stochastic map offers accurate position fixes
of both the obstacles and the vehicle itself. However the
MHTF module is expensive in terms of computing power,
exponentially increasing according to the number of targets
being considered by the hypothesis matrix. Future work
will compare the method with a nearest neighbour algo-
rithm aided by simple heuristics and improved feature ex-
traction techniques.

The results shown should be expected to improve as
sensors and a valid vehicle model are integrated into the
system. Further testing is planned using a mechanically
scanned sonar on-board RAUVER, a house-built ROV.
These future experiments will be carried out with the help
of dead-reckoning sensors, so that the dependency on large
feature densities is reduced.
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