
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 19, NO. 1, FEBRUARY 2003 15

Autonomous Vehicle Positioning With GPS in
Urban Canyon Environments

Youjing Cui and Shuzhi Sam Ge, Senior Member, IEEE

Abstract—The Global Positioning System (GPS) has been widely
used in land vehicle navigation applications. However, the posi-
tioning systems based on GPS alone face great problems in the
so-called urban canyon environments, where the GPS signals are
often blocked by highrise buildings and there are not enough avail-
able satellite signals to estimate the positioning information of a fix.
To solve the problem, a constrained method is presented by approx-
imately modeling the path of the vehicle in the urban canyon envi-
ronments as pieces of lines. By adding this constraint, the minimum
number of available satellites reduces to two, which is satisfied
in many urban canyon environments. Then, different approaches
using the constrained method are systematically developed. In ad-
dition, a state-augmentation method is proposed to simultaneously
estimate the positions of the GPS receiver and the parameters of
the line. Furthermore, the interacting multiple model method is
used to determine the correct path which the vehicle follows after
passing an intersection of roads. Simulation results show that this
approach can solve the urban canyon problems successfully.

Index Terms—Extended Kalman filtering, Global Positioning
System (GPS), interacting multiple model, joint parameter and
state estimation.

I. INTRODUCTION

T HE GLOBAL Positioning System (GPS) has been widely
used as a component in land vehicle navigation systems.

However, the positioning systems based on GPS are challenged
by urban canyon environments in terms of delivery of enough
continuous positioning information. To obtain the positioning
information of a fix, signals from at least four satellites are re-
quired. However, in urban areas, GPS signals are often blocked
by highrise buildings (in the so-called “urban canyons”). This
means that for a significant percentage of the journey time, a
pointwise position solution is not available.

To tackle the problem associated with GPS in urban canyon
environments, several approaches have been proposed as de-
tailed below.

1) To increase the number of visible satellites. In [3], [9],
the Russian Global Navigation Satellite System (GLONASS)
is used to augment the GPS by offering more satellites in view
and thus, increasing the satellites’ availability. Advanced GPS
receivers [10], [11] have been developed which can access up to
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eight or more GPS satellites, and to thereby minimize any risk
of urban blockage.

2) To find a constrained solution. For example, in marine ve-
hicle applications, the altitude could be defined as sea level [1].
In land vehicle applications, if the altitude changes slowly, it is
often considered constant and assumed to be known [7].

3) To use external references [1] such as an altimeter or a
precise clock [8].

4) To integrate the GPS with dead reckoning sensors such
as intertial navigation systems (INS) and encoders to provide
continuous positioning information [2]–[6].

5) To solve the urban canyon problem by modeling the dy-
namics and using a Kalman-filter-based approach. The Kalman
filtering method has been widely used in robot self-localization
[23], [24] as well as GPS applications [25]–[27]. The Kalman
filter time update always provides a position estimate, even if
no pseudorange measurements are available. But the covariance
of this estimate will increase in at least one direction when the
number of independent range measurements is less than four
[1].

In this paper, another constrained solution is proposed to
solve the problem by approximately modeling the path of
the vehicle as pieces of curves such as straight lines, arcs,
polynomials, and so on. As the vehicle travels in an urban
area, its path is always constrained in a certain piece of road.
By approximately modeling the path of the vehicle as a line
resembling the road knowna priori, fewer GPS satellites
are necessary to obtain the positioning information. In fact,
the minimum number of the available satellites drops to two.
Fortunately, detailed maps are usually available for most
cities. Accordingly, the city map can be modeled as junctions
connected by piecewise continuous lines. In such a manner, the
information of the map is stored in the database of the proposed
GPS positioning system.

Though an approximate model of the vehicle’s path can be
obtained from the map database, the actual path may deviate
from the approximate model and is to be estimated. In this paper,
the state augmentation method and the extended Kalman fil-
tering (EKF) technique are used together to simultaneously es-
timate the parameters of the actual path and the positioning in-
formation.

To enable the vehicle to be capable of choosing the right road
model after passing an intersection, some probabilistic approach
needs to be adopted to solve the multiple hypotheses problem.
Many statistical techniques, such as the nearest neighbor algo-
rithm [13], the track-splitting filter [13], the joint-likelihood al-
gorithms [13], and the Markov approaches [14]–[16], have been
used for data association and robot navigation applications. In
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this paper, the interacting multiple model (IMM) algorithm is
employed to solve the multiple hypotheses problem. The IMM
method has been widely used in multitarget tracking applica-
tions [18], [19], [21]. It is also used to improve the signal-to-
noise ratio (SNR) for noisy speech [17]. In this paper, the IMM
method combined with EKF is used to estimate the position of a
vehicle at intersection areas and to choose the correct road from
all the roads connected to this intersection as it leaves the inter-
section.

The paper is organized as follows. Section II briefly describes
the urban canyon problem associated with GPS and presents the
concept of the new constrained solution to it. Section III de-
velops pointwise and filtering approaches to implementing the
constrained solution. In Section IV, a general method by com-
bining the state augmentation technique and the EKF method is
presented to estimate the parameters of the curve model of the
vehicle’s path and the positioning information simultaneously.
Section V focuses on solving the multiple hypotheses problem
encountered when the vehicle meets an intersection by the IMM
method. In Section VI, the performance of the proposed ap-
proach is analyzed. In Section VII, simulation studies reveal the
feasibility and effectiveness of the proposed approach.

II. PROBLEM FORMULATION

GPS positioning is often solved in the earth-fixed rectan-
gular coordinate system, where the user’s position is denoted by

and the th satellite position is denoted by
and , with being the number of the avail-
able satellites. The pseudorange measurement,, from the th
satellite to the user is given by

(1)

where is the ac-
tual range from theth satellite to the user, is the distance
corresponding to the user’s clock bias with respect to the GPS
time, and represents all the other errors contributed to the
pseudorange measurements. If stand-alone GPS is used,’s
contain some common mode errors, and thus, are correlated to
each other. If differential GPS (DGPS) is adopted, the common
mode errors in are eliminated through differencing. Thus,
contains only uncommon mode errors and can be considered as
uncorrelated to each other. In this case, the error terms can be ap-
proximately characterized by zero-mean Gaussian white noise
with a typical standard deviation of 1 m. Since the satellite posi-
tions can be precomputed from the ephemeris data, the user po-
sition and clock bias can be derived from (1) by neglecting.
Since there are four unknowns,, , , and , in the pseudor-
ange equations, at least four satellites are needed at each epoch.

When a vehicle with a GPS receiver on board travels in urban
areas, the GPS signals are often blocked by highrise buildings
which form the so-called urban canyon environments. In such
situations, if the number of available satellites is less than four
at a given epoch, then the complete GPS solution cannot be ob-
tained through the pseudorange equations (1) directly.

As mentioned in Section I, several approaches have been
proposed to tackle the problem associated with GPS in urban
canyon environments. In this paper, another constrained
solution is provided to solve the problem by approximately

modeling the path of the vehicle by pieces of curves in the
urban canyon environments. As the vehicle travels in an urban
area, its path is always confined in a certain piece of road. By
modeling the path of the vehicle as a curve resembling the
shape of the road, fewer GPS satellites are necessary to obtain
the positioning information.

Generally, a curve in space can be regarded as the intersection
of two surfaces. Recall that any surface in space can be described
by . Therefore, a curve can be generally modeled
by

(2)

Combining (1) and the two equations in the general line
model (2) leads to equations at each epoch with four
unknowns, the current position (, , ) and the user’s clock
bias , provided that the parameters of the line are knowna
priori . To obtain the four unknowns at each epoch, the number
of equations cannot be less than four, i.e., . Thus, the
minimum number of satellites to obtain the position and clock
bias information drops to two.

The operations of the overall GPS-based positioning system
are as follows. When the GPS receiver is able to access enough
satellite signals with good geometry, the positioning informa-
tion will be estimated through a traditional approach by using
the pseudorange equation (1) only. If the vehicle travels in urban
canyon environments, some GPS signals are lost by blockage.
In this case, the positioning system estimates the positioning in-
formation by utilizing both the available GPS signals (suppose
that there are at least two GPS satellites in view) and the model
of the path of the vehicle. If the urban canyon environment is
a road intersection, then the IMM method is used to estimate
the position of the vehicle and determine the correct path model
which the vehicle follows.

III. SOLUTIONS

If the curve model of the path of the vehicle is known, the
positioning information of the vehicle can be calculated from
two (or more) pseudorange equations and the curve model. No-
tice that in reality, most pieces of roads are straight lines, arcs,
or other simple smooth curves. Therefore, without losing gen-
erality, assume that bothand can be written as an explicit
function of . Then, a road can be simply modeled by

(3)

Thus, for the case of available satellites, where , the
set of equations to be solved are

(4)

(5)

(6)

Basically, the solutions to this problem fall into two cate-
gories, the pointwise solution, which estimates the current po-
sitioning information using only the current available informa-
tion, and the filtering solution, which utilizes both the current
information and previous information to give the current posi-
tioning estimates. For the point solutions, there exist two kinds
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of approaches: 1) the direct approach, which solves the non-
linear equations directly and obtains a closed-form solution; and
2) the indirect approach, which is based on linearization of the
measurement equations. For , usually no solution can
be obtained due to the measurement noises by using the direct
solution. Even for the case of , since (5) and (6) are gen-
erally also nonlinear and it is difficult to solve (4)–(6) directly.
Therefore, only the indirect approach and the Kalman filtering
approach are discussed in this section.

A. Indirect Solution

Substituting (5) and (6) into (4) and linearizing the resulting
equations about leads to

(7)

where

and

...
...

with

(8)

where . Since the number of measurement equa-
tions is greater than or equal to the number of unknowns, the
least-squares method is adopted, and the solution is given by

(9)

by assuming that is nonsingular, where .
With knowledge of the position error , the actual position

is determined as

(10)

B. Kalman Filtering Solution

Kalman filtering has been the standard method used in most
GPS receivers to provide user position and velocity outputs [1].
By noting that the pseudorange equation (1) is inherently non-
linear, the EKF technique is adopted herein to estimate the po-
sitioning information.

Assumption 1:Assume that DGPS is used in the positioning
system instead of stand-alone GPS.

Under this assumption, the noisesin the pseudorange mea-
surements can be regarded as uncorrelated to each other, and the
error terms can be approximately characterized by zero-mean
Gaussian white noises, which facilitates the system modeling
for Kalman filtering. If stand-alone GPS is adopted,con-
tains some common mode errors, and thus, are correlated to
each other. Therefore, the Kalman filtering method cannot be

applied directly. Of course, one can still use the Kalman filtering
approach in this case by properly modeling the common mode
errors. For simplicity of presentation, only the DGPS case is
studied in this paper. In order to understand the EKF approach
for position estimation in the case of urban canyon environments
more clearly, first, the EKF solution for the case where there are
enough GPS satellites is discussed.

1) In Non-Urban-Canyon Area:When the receiver is in low
dynamic motion, (i.e., near constant velocity), the velocity is
modeled as a random-walk process, and the position is modeled
as the integral of velocity. Physically, the clock bias develops as
the integral of the frequency error of the receiver clock oscillator
[1]. Thus, the receiver clock bias can be described by a two-state
model

(11)

where and are the process noises driving the phase and
the frequency error states, respectively. Then, the state-space
model for the GPS receiver is given by

(12)

where

The terms would be selected to model the random variations
in the velocity. Obviously, this state-space model is linear. The
pseudorange equation (1) is regarded as the measurement equa-
tion, which can be rewritten as

(13)

where

and

Equations (12) and (13) are a continuous-time model for the
system. The corresponding discrete-time model is described by

(14)

(15)

where with being the sampling period, and
is a discrete-time white Gaussian sequence that is statistically
equivalent through its first two moments to
[12].

Under the assumption that the noises, and , are
zero-mean normal distributed white noises and are character-
ized by covariance matrices, and , respectively, the EKF
equations are given by

(16)

(17)

(18)

(19)

(20)

where
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with

2) In Urban Canyon Environment:In the urban canyon en-
vironment, we shall use (4)–(6) to estimate the positioning in-
formation. Since and are functions of according to (5) and
(6), the states chosen to describe the dynamics of the receiver
become

(21)

The state-space model is given by

(22)

where

The measurement equation is also given by (1) which can also
be written in the following form

(23)

where with .
The EKF solution to (22) and (23) is similar to (14)–(20).

Note that the matrix in (18) and (19) becomes

with

IV. STATE-AUGMENTED EKF

In Section III, solutions to (4)–(6) are studied by assuming
that both the type and the parameters of the curve model of
the vehicle’s path are knowna priori. In real implementation,
though the mathematical model for a certain road can be
achieved from the map, the actual path of the vehicle may
deviate from this model. Therefore, in real implementations, a
model for the path of the vehicle is established which resembles
the form of the road model, but whose parameters are unknown
and to be estimated. In this paper, the state augmentation
method and the EKF technique are used together to estimate
the parameters of the line and the positioning information
simultaneously.

The fundamental concept of state augmentation is to treat the
unknown parameters of the curve also as states. The curve of
the vehicle’s path with unknown parameters can be written as

(24)

where denotes the unknown parame-
ters of the curve and is the number of the parameters to be
estimated.

The resulting state-space model is given by

(25)

where

with

According to (1), the measurement equation can be written as

(26)

where

with .
The EKF equations to estimate are similar to

(14)–(20). Note that the measurement matrix becomes
with

In the Appendix, detailed algorithms are given for three
common road models: straight lines, arcs, and polynomials.

In the EKF process, the nonlinear system is relinearized about
each new estimate as it becomes available. Thus, the EKF is
designed to work well as long as the estimates are near their
true values. Therefore, the initial states of the augmented system
cannot be given arbitrarily. They must not deviate from their
true values too much. Fortunately, since the detailed digital map
of the city is available, the curve model for each piece of road
can be determined prior to the navigation process. Hence, the
parameters of the curve model for the road can be regarded as
the initial estimates of the parameters of the curve modeling the
vehicle’s path.

V. POSITIONING AT INTERSECTIONSUSING IMM A LGORITHM

In real urban environments, the road segments are connected
by intersections. Therefore, it is of great importance for the ve-
hicle to “know” which road it is following when crossing road
intersections, and then be able to use the correct road model for
state-augmented EKF. In this paper, the IMM method is adopted
to fulfill this task.

The IMM method is a powerful approach for adaptive estima-
tion. In this approach, a set of models is defined to represent the
possible system behavior patterns, and the overall estimate is ob-
tained by a certain combination of the estimates from the filters
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Fig. 1. Roads segmentation and intersection representation.

running in parallel, based on the individual models that match
the system modes [20]. For detailed derivation of the IMM es-
timator, refer to [17] and [22].

A. Map Representation

The map of the environment is represented by a set of roads
which are connected by a set of intersections. Fig. 1 shows an
example of the road segmentation and intersection representa-
tion based on a city map, where AB, BC, …, HI denotes eight
roads; along each road, the intersections are denoted by black
dots. Though the segmentation of roads can be, theoretically, ar-
bitrary, it should be neither too detailed nor too sketchy in prac-
tice. Too few roads will lead to large modeling errors. Increasing
the number of roads may improve the modeling accuracy, but
it will increase the burden of data storage and processing. A
tradeoff needs to be made in road segmentation depending on
the desired accuracy. In this paper, the roads are segmented in-
tuitively based on the city map.

For each segmented road, , with
being the total number of roads, the following pieces of infor-
mation need to be stored.

• Shape of the road, such as straight, arc, or second-order
polynomial, etc. The shape of a road determines the number of
parameters of the road model.

• Parameters of the road model.
• Indexes of intersections in this road.
For each intersection, , with being

the total number of intersections, the following pieces of infor-
mation need to be stored.

• Position of the intersection.
• Indexes of roads that connect to this intersection.

Fig. 2. Vehicle comes to an intersection.

• Radius of the intersection area . The intersection area
is defined as a circular area which covers the intersection. As
soon as the vehicle enters an intersection, the IMM method is
supposed to be triggered to estimate the position of the vehicle
and select the correct road model.

B. IMM Algorithm

As the vehicle enters an intersection area, the IMM algorithm
will be triggered to estimate the position of the vehicle and de-
termine the correct road that the vehicle is following. For ex-
ample, as shown in Fig. 2, the vehicle moves toward intersec-
tion with an circular intersection area centered at
with radius , which connects to four roads, namely, , ,

, and . Generally, it is assumed that there are roads
connected to intersection , and these roads are denoted by

. As long as the vehicle enters the in-
tersection area, i.e., the distance between the position estimates
of the vehicle and the center of the intersection is less than the
radius of the intersection area, the IMM method is triggered.

In this method, EKFs are running in parallel, each based
on one road model connected to. As will be seen in the rest of
this section, the state estimates of each EKF will interact with
each other in the IMM algorithm. Therefore, in the IMM algo-
rithm, all the EKFs are designed without state augmentation, be-
cause the state-augmented EKFs are road-model dependent and
their state estimates cannot be combined or mixed. The likeli-
hood of each road will be calculated based on the estimates of
these EKFs and will be used as the criterion of determining the
correct road model.

For road model , the continuous
state-space model of the vehicle is given by (22), and can be
rewritten as

(27)

where denotes the state using road model. The mea-
surement equation for road model
is similar to (23), i.e.,

(28)

The corresponding discrete-time models of the vehicle can be
written as

(29)

(30)
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The purpose of using the IMM method herein is to estimate
the probability of each road connected to the intersection. The
model of the road with the maximum probability will be con-
sidered as the road which the vehicle follows. Some probabili-
ties needs to be defined. First, the probability of road model
being correct at time is defined as the conditional probability

(31)

where , is the set of measure-
ments collected till time . The probability of road model
being correct at time , conditioned on that model being
correct at time , is called model transition probability, and
is defined as

(32)

In this paper, the following assumptions are made for imple-
menting the IMM method.

Assumption 2:When the vehicle enters an intersection,
the road which the vehicle comes from is denoted as, and
other roads are labeled as .

Assumption 3:It is assumed that the vehicle may transit from
to all the road models, including itself, with equal proba-

bility.
Assumption 4:It is assumed that once the vehicle transitions

from to another road , the transition probability from
to each of the other roads will be equal and be very small.

Based on the above assumptions, the transition probability
matrix for intersection can be defined as

(33)

where is a positive scalar denoting the probability that the
vehicle keeps following the road once it enters the road. In this
paper, is set to be 0.8.

The other two probabilities which will be used in the IMM al-
gorithm are the predicted model probability , and the mixing
probability given by

(34)

(35)

The IMM algorithm is given below [18].
Step 1:Initialization.
Assume that the vehicle comes from road and enters the

intersection at time . For the th EKF, , the
state for each road model is initialized as the first four
states of , and the covariance for each road

is initialized as the upper left 44

subarray of , where is the number of roads connected
to this intersection, and and are the state estimate
and covariance of the state-augmented EKF by using road model

. The initial road model probabilities are set by

because it is certain that the vehicle comes from road.
Step 2:Interaction.
The predicted road probability is given by

(36)

The mixing probability is given by

(37)

The mixed state estimate and covariance are given by

(38)

(39)

Step 3:Prediction.
The state and covariance are propagated as

(40)

(41)

Step 4:Update.
The measurement residual and residual covariance can be

written as

(42)

(43)

where is the corresponding Jacobian matrix. The state and
covariance for each road model is updated by

(44)

(45)

where is the filter gain for each road model

(46)

The likelihood function of road model is given by

(47)

where is the normalized innovation squared

(48)
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Step 5:Combination and Model Probability Update.
The probability of each road model is updated by [17]

(49)

The state and covariance update are realized by the following
equations:

(50)

(51)

The position of the vehicle is updated as follows. Define the
estimated position of the vehicle for each road model as

(52)

where and .
The combined position estimate is given as

(53)

Step 6:Termination Detection.
The IMM method will be terminated if the correct path has

been selected after the vehicle passes the intersection. Other-
wise, repeat Step 2-Step 6 if either of the following two condi-
tions are not satisfied:

1) the vehicle has moved out of the intersection;
2) the maximum road probability

(54)

where is a positive scalar near to but less than 1. In this paper,
.

Once the IMM algorithm is terminated, the state-augmented
EKF using the selected road model is reinitialized and retrig-
gered using the road model selected by the IMM algorithm.

VI. PERFORMANCEANALYSIS

In this section, the performance of the proposed constrained
solution for solving the urban canyon environment is analyzed.
The objective is to find the relationship between the pseudo-
range measurement errors and the user position and clock bias
errors. Since in the filtering solution and the joint parameter and
state estimation method, EKF is adopted to estimate the states
and it is difficult to analyze its performance due to the intrinsic
nonlinearity and relinearization, we shall not analyze the perfor-
mance of the filtering solutions. Instead, the performance anal-
ysis is focused on point-wise solutions.

Assume that there are GPS satellites available, with
. Then, the linearized error equation is given by

(55)

Denote as the pseudorange deviation without any corrup-
tion of noises, i.e., . Therefore, the noisy estimate
of the position can be written as

(56)

Since the noise is zero mean, the expectation value of is
.
To calculate the variance of the estimated position and re-

ceiver clock bias, let each individual pseudorange measurement
have an error covariance denoted byand the cross correlation
of errors between satellites be zero. With these assumptions, the
covariance matrix for the pseudorange measurements
becomes a scaled identity matrix . Hence, the covariance
matrix of based on a single set of simultaneous pseudorange
measurements can be written as

(57)

Define

(58)

By taking inverse of , can be written as

(59)

Exploring the denominator, we have

(60)

Then can also be written as

(61)

The variances of the positioning error indirection and the
receiver clock bias is then estimated by

(62)

(63)

where

One can prove that is a nonincreasing function with respect
to . This means that the more satellites in view are used, the
better the positioning performance.
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Fig. 3. GPS receiver and satellites in the body frame.

According to (5) and (6), the variance ofand are approx-
imately given by

(64)

(65)

It is clear that the positioning performance depends on the
sum of the magnitudes of , , and . It is
valuable to examine the relationship between the satellite-road
geometry and the magnitude of , and

. In the following part of this section, the relationship is
analyzed for the case .

Obviously, as , the positioning performance depends
on the magnitude of only, i.e., the larger the magni-
tude, the better the performance. For simplicity of analysis, the
following analysis is with respect to the body frame, which is de-
fined to be a right-handed coordinate frame fixed at the vehicle
with the origin at the center of the vehicle, theaxis pointing
forward, the axis pointing left, and the axis pointing upward.
Since distances remain unchanged under rectangular coordinate
transformation, the proposed approach is applicable to any rect-
angular coordinate systems. It is obvious that in the body frame,
the coordinates of the vehicle is (0, 0, 0) and
. Therefore, the following equalities hold:

(66)

where and are user-to-satellite distances as shown in Fig. 3.
Denote the angles between the user-to-satellite vectors and the

plane as and , respectively, and denote the angles
between the projections of the user-to-satellite vectors onto the

plane and the axis as and , respectively. Then, we
have

(67)

Since the vehicle travels in an urban environment,and are
very small, which means . Therefore

(68)

Since and , we have
, and ,

which means that is a nonpositive decreasing function.
This means that the larger the , the smaller the ,

or, the larger the magnitude of . In other words, the
larger the angle between the projections of the two user-satel-
lites vectors on the plane, the better the positioning perfor-
mance. Therefore, in the applications, when there are more than
two satellites in view, we may use all the satellite information to
compute the position of the receiver, or we may choose the two
satellites with the maximal angle between the two user-to-satel-
lite vectors.

According to (64) and (65), , and the distance
root mean square error (DRMS) is

(69)

The position dilution of precision (PDOP) is defined as

(70)

Note that PDOP is related not only to the user-to-satellite ge-
ometry, but also to the direction of the path of the vehicle. In
the common GPS positioning mode with enough satellites, the
PDOP is inversely proportional to the volume of a body which
is formed by the intersection points of the user-satellite vectors
with the unit sphere centered at the user, and the GPS perfor-
mance can be predicted by only evaluating the volume. Simi-
larly, in the case of only two available satellites, the GPS per-
formance indicator PDOP can be predicted by only evaluating
the angle between the two user-to-satellite vectors. The larger
the angle, the better the GPS performance.

VII. SIMULATION STUDIES

In this section, the effectiveness of the proposed method is
demonstrated through computer simulations. Assume that the
vehicle equipped with a GPS receiver travels somewhere with
the local horizontal plane coordinate system originated at lati-
tude , longitude , and height

m in the earth-centered–earth-fixed (ECEF) coordinate
frame. The road map of the navigation environment with respect
to the local horizontal plane frame is shown in Fig. 1, where the
grey polygons represent buildings in this area. When generating
the available GPS satellite signals, it is assumed that the heights
of these buildings range from 60–180 m. The vehicle is assumed
to travel from point A along the labeled path to point I.

To compare the performances of the proposed approach and
the conventional EKF method which utilizes the system model
(12) and (13) all the time for GPS positioning in urban canyon
environments, simulations are performed using both methods
under the same conditions. Fig. 4(a) and (b) show the posi-
tioning errors using the conventional EKF method without path
modeling and the proposed approach with path modeling, re-
spectively. Fig. 4(c) shows the corresponding number of avail-
able GPS satellite signals. Obviously, as the number of avail-
able GPS satellites becomes less than four, the positioning dis-
tance error by using conventional EKF without path modeling
increases fast. By contrast, the positioning distance errors are
much lower for the case of using the proposed method with
path modeling. In fact, the mean distance error by using the
conventional method is 1205 m, while the mean distance error
by using the proposed method is only 0.436 m. In Fig. 4(b),
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Fig. 4. Simulation results.

there are several impulses in the distance errors. These pulses
appear when the vehicle just enters an intersection where the
IMM method is reinitialized, and the position estimates are ob-
tained using the IMM method by combining the state estimates
from all the extended Kalman filtering running in parallel. As
shown in Fig. 4(b), the distance errors at these time instants may
drop fast as more signals are received.

From Fig. 4(b), it can be easily seen that the positioning dis-
tance errors are much lower in the case that the number of avail-
able GPS satellites is larger. When the number of available GPS
satellites is one, the positioning distance error using the pro-
posed method may also increase. For example, during the pe-
riod s, the number of available GPS satellites is
one. The distance errors during this period increase from 0.564
m to 2.73 m. This is one limitation of the proposed method.
Nevertheless, the divergence of distance errors using the pro-
posed method is much slower than that using the conventional
EKF method without path modeling, and fortunately, the period
of only one available GPS satellite is short in usual urban en-
vironments and the distance errors are within acceptable levels,
therefore, the path modeling method can be regarded as a suc-
cessful method to solve the urban canyon problem.

It is also found that the IMM method can work effectively.
As the vehicle moves and more data are collected, the proba-
bility of the correct road increases while the probabilities of the
wrong roads decrease. In fact, the terminating conditions 1) and
2) with high can guarantee that before the IMM algorithm is
terminated, the road model can be correctly determined.

VIII. C ONCLUSION

In this paper, a constrained method has been presented by
approximately modeling the path of the vehicle in the urban
canyon environment as pieces of straight lines. By adding this
constraint to the set of pseudorange equations, the minimum
number of available satellites reduces to two, which is satisfied

in many urban canyon environments. In this paper, point-wise
solutions and filtering solutions are developed systematically.
In addition, a state augmentation method is also presented to
estimate the parameters of the straight line and the positioning
information simultaneously. Based on the augmented system,
EKF is employed to estimate the states. When the vehicle en-
ters intersection area, based on the models of all the roads con-
nected to this intersection, the IMM method is used to simulta-
neously estimate the position of the vehicle and determine the
road which the vehicle follows. Simulation results show the fea-
sibility and effectiveness of the proposed approach.

APPENDIX

Notice that most roads in urban area can be modeled by
straight lines, helix, and lower-order polynomials. Therefore,
the algorithms for these three types of roads are discussed in
detail herein. For more winding roads, they can be modeled by
higher-order polynomials and the algorithms can be similarly
achieved according to the analysis in Section IV.

A. Straight Roads

Define a straight road as

(71)

where , , , and are four known parameters.
Without losing generality, assume that this straight line models
the center line of the road. As the vehicle travels along this
road, its path may not coincide with the center line of the road.
Hence, we shall assume that its path is still a straight line with
the same form but slightly different parameters, i.e.,

(72)

where , , , and are four unknown parameters to be es-
timated. The algorithm for joint parameter and state estimation
follows the analysis in Section IV, where the augmented state is
given by

(73)

The EKF algorithm follows (14)–(20), with

where

B. Arc Roads

Some winding roads can be modeled by arcs. Assume that all
the navigation computations are implemented with respect to
a local navigation frame (north–east–down). Often, the arc road
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does not lie on the horizontal plane. Instead, it is an ascending or
descending arc. Assume that the road ascends/descends linearly,
then, a common model for ascending/descending arc roads is
given by

(74)

where – are five known parameters. Similarly, the path of
the vehicle along this road can be modeled by

(75)

where – are five unknown parameters to be estimated. The
corresponding augmented state is given by

(76)

and the algorithm for joint parameter and state estimation fol-
lows the analysis in Section IV, where

with

The parameters of the road model– can be regarded as
the initial estimates of the parameters,– , of the arc model
of the vehicle’s path.

C. Roads Modeled by Polynomials

Most roads can be modeled by polynomials. In this subsec-
tion, we shall take the third-order polynomial as an example.
Assume that road is modeled by

(77)

where – are five known parameters. Similarly, the path of
the vehicle along this road can be modeled by

(78)

where – are eight parameters to be estimated. The corre-
sponding state is given by

(79)

and the matrix is given by

with
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